
Chinook Fishery Regulation Assessment Model (FRAM)

Base Data Development v. 3.0 (Auxiliary Report to FRAM Technical Documentation)

MODEL EVALUATION WORKGROUP

Pacific Fishery Management Council 7700 NE Ambassador Place, Suite 101 Portland, OR 97220-1384 (503) 820-2280 www.pcouncil.org

October 2008

ACKNOWLEDGMENTS

MODEL EVALUATION WORKGROUP

MR. ANDY RANKIS, CHAIR

Northwest Indian Fisheries Commission, Olympia, Washington

MR. LARRIE LAVOY, VICE CHAIR

Washington Department of Fish and Wildlife, Olympia, Washington

MR. ETHAN CLEMMONS Oregon Department of Fish and Wildlife, Newport, Oregon

MR. ROBERT CONRAD Northwest Indian Fisheries Commission, Olympia, Washington

MR. ALLEN GROVER California Department of Fish and Game, Santa Rosa, California

MR. JIM PACKER

Washington Department of Fish and Wildlife, Olympia, Washington

MR. RISHI SHARMA Columbia River Intertribal Fish Commission, Portland, Oregon

MR. DELL SIMMONS National Marine Fisheries Service, Lacey, Washington

MR. HENRY YUEN U.S. Fish and Wildlife Service, Vancouver, Washington

PACIFIC FISHERY MANAGEMENT COUNCIL STAFF

MR. CHUCK TRACY MS. RENEE DORVAL MS. CARRIE MONTGOMERY MS. KIM MERYDITH

The MEW and the Council staff express their thanks for the expert assistance provided by Ms. Angelika Hagen-Breaux and Mr. Jeff Haymes, Washington Department of Fish and Wildlife, Ms. Carrie Tabor-Cook, U.S. Fish and Wildlife Service, and Mr. Curt Melcher, Oregon Department of Fish and Wildlife, in completing the FRAM documentation.

This document may be cited in the following manner:

Model Evaluation Workgroup (MEW). 2008. Chinook Fisheries Regulation Assessment Model (FRAM) Base Data Development v. 3.0 (Auxiliary Report to FRAM Technical Documentation for Coho and Chinook). (Document prepared for the Council and its advisory entities.) Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, Oregon 97220-1384.

A report of the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number NA05NMF4410008.

TABLE OF CONTENTS

	Page
1. Introduction	
2. Base period model Input Data	
2.1 CWT Groups 2.2 Stock Profiles	
2.3 Base Period Catch and Escapement	
2.4 Fishery Induced Mortality Factors3. Calibration	
3.1 Overview	
3.2 Calibration Iteration Process and Out-of Base Simulation	
3.2.1 Annual Abundance Scalar Derivation	
3.2.2 Fishery Effort Scalar Derivation	
3.2.3 OOB CWT Expansion	
3.3 Primary Calibration Program: CHDAT	
3.3.1 CHDAT Input file description – ".CHK" file	
3.3.2 CHDAT Input file description – ".CWT" file	
3.3.3 CHDAT Program Flow and Calculations	
3.3.4 CHDAT Output File Descriptions –". CAL" file	
3.3.5 CHDAT Output File Descriptions –". EDT" file	
3.3.6 CHDAT Output File Description – ".ERR" File	
3.4 Primary Calibration Program: CHCAL	
3.4.1 CHCAL Input file description – ".CAL" file (from CHDAT)	
3.4.2 CHCAL Input file description –". EDT" file (from CHDAT)	
3.4.3 CHCAL Input file description –". SCL" file (from FRAM validation runs for OOI	
3.4.4 CHCAL Variables and Notation	
3.4.5 CHCAL "Backward" Cohort Analysis (Age 5 backward through Age 2) for	
OOB stocks	24
3.4.6 CHCAL "Forward" Cohort Analysis (Age 2 forward through Age 5) for OOB	
stocks	26
3.4.7 CHCAL Outputs – ".SIM" file for OOB Run	28
3.4.8 CHCAL Program Flow and Calculations – All-Stocks Run	
3.4.9 CHCAL Output— FRAM base period ".out" file from All Stocks Run	32
CHCAL OUT File: Section 4	32
4. Appendix	
4.1 List of CWT groups	36
4.2 Sample FRAMBUILDER output	
4.3 FRAM Chinook Stock Profiles	50
4.4 Fishery and Stock List	
4.5 Functional Description of Calibration Programs and Worksheets	
4.6 Stepwise Calibration Instruction	
4.7 Sample Calibration Inputs, Outputs and worksheets	
4.8 Example of CHCAL Cohort Analysis Process (Section 3.4 Equations 1-26)	
4.9 Calibration Program "pseudo" code	. 111

LIST OF FIGURES

	Page
Figure 1. Chinook FRAM Calibration Overview (Section 3.1)	
Figure 2. Chinook FRAM Validation Annual Recruit Scalar Development	6
Figure 3. Chinook FRAM Calibration Cycle for OOB Stocks	
Figure 4. Chinook FRAM Calibration for "All-stock" Base Data Development	

1. INTRODUCTION

This report describes the data types and process involved in developing the model "base" data inputs for Chinook salmon used in the Fishery Regulation Assessment Model (FRAM). The base data for Chinook FRAM covers the stock abundances and fishery impacts for production from 1974-79 brood years as estimated through coded-wire-tag (CWT) recovery analysis representing FRAM stocks. These base years are used because they covered a period of generally broad CWT tagging of stocks and nearly wide-open fisheries. By having a diverse set of stocks and fisheries covered by CWT analysis, FRAM is able to assess the impacts of likely fishery options proposed in current management forums. Chinook FRAM shares many of the same CWT tag groups that are used in the Chinook model used in fishery management by the Pacific Salmon Commission in accordance with the Pacific Salmon Treaty.

In addition to CWT recovery data representing FRAM stocks, other key data needed for development of the FRAM base period data set includes: 1) stock abundances/recruitment to fisheries and escapements, 2) life history information on maturation, age structure, natural mortality, and growth rates, 3) fishery landings or effort indices, and 4) fishery related mortality factors for fish released or fish encountering the gear.

The base period data is developed into the FRAM base input file through a process of cohort analysis using the CWT groups. Several FRAM stocks were not CWTed during the 1974-79 brood years. For these stocks, CWT groups from out-of-base (OOB) tagging years were used and were simulated back to the base period in a process of calibration. The OOB simulation performed through the calibration process is the most time consuming part of developing the base data input file for Chinook FRAM.

For a detailed discussion of model functions, specifications, and algorithms refer to the report "Fishery Regulation Assessment Model (FRAM) –Technical Documentation for Chinook and Coho" available from Pacific Fishery Management Council (PFMC). A more general discussion of FRAM is contained in a corresponding "Overview" report also available from PFMC.

2. BASE PERIOD MODEL INPUT DATA

Development of the base data is done without regard to fin clip mark status of each FRAM stock group during the base period. This approach is used to ease the computations and is logical since mark status of a stock should not influence the catch during the base period where there were no mark selective fisheries. At the completion of the base data development process, each FRAM stock-age cohort is split in half into "unmarked" and "marked" components to allow for processing of mark-selective fisheries in "forward-projection" runs of FRAM used in preseason fishery modeling (see Section 8 of FRAM Overview).

2.1 CWT Groups

CWT groups were identified representing each of the 33 FRAM stock units (Appendix 4.1). In most cases, CWT groups from hatcheries within a FRAM stock basin were used to represent both hatchery and naturally produced fish. Selected CWT groups were usually from "production" or "indicator" tag groups that were considered similar to the stock ancestry and freshwater and marine life history of the local natural stock. Estimated recoveries (observed expanded by sampling rates) from these tag groups were downloaded in July 2005 from the Regional Mark Information System of the Pacific States Marine Fisheries Commission website. For each of the FRAM stock CWT group aggregates, the "raw" recoveries were run through the program FRAMBUILDER which maps the estimated age-specific CWT recoveries to FRAM fishery and time strata. An example of the output is shown in Appendix 4.2.

2.2 Stock Profiles

Summaries of data and sources used during model base data development were completed for each of the FRAM stocks (Appendix 4.3). Key components used in data development were, of course, CWT groups, abundance information based on terminal area run reconstruction, and length-at-age growth functions used to estimate proportion of the stock-age vulnerable to harvest. Two length-at-age growth functions were developed for each stock; one to be used to estimate proportion vulnerable in mixed maturity fisheries (preterminal) and one for fisheries assumed to be on mature fish only. The length-at-age growth functions were developed from CWT groups for Chinook with similar age of migration as juveniles into salt water (i.e., fingerling vs. yearling) and/or timing as adults into freshwater (spring, summer, summer/fall).

2.3 Base Period Catch and Escapement

Annual catch for each of the FRAM fisheries and escapement for each of the FRAM stocks were compiled (Appendix 4.4). These base period catches and escapements weren't necessarily an average of the same set of recovery years for each fishery or stock, because CWT releases from the stocks never covered all of the brood years considered as base period (1974-79). Therefore, some weighting of fishery catch and stock escapements were made depending on which of the specific brood year CWT release groups were used. For those fisheries that did not occur during the base period or where there was no CWT sampling, stock composition from similar existing fisheries were used as surrogate.

Base period catch and escapement estimates were key components of the calibration and out-of-base (OOB) CWT recovery simulation process described below. Base period catches were used, in part, to derive an estimate of the proportion of the catch explained by FRAM stocks. This "proportion modeled stocks" was calculated during the model calibration process for the base data and was used as a constant adjustment factor for any out-of- base year model runs including those for preseason modeling. Base period escapement for each stock was used to derive a production expansion factor (PEF) from the base escapement divided by CWT escapement.

2.4 Fishery Induced Mortality Factors

Fishery related mortality factors include hook and release mortality, hook and line drop-off, and net dropout. Rates associated with these factors are used for the base period data development process and the associated cohort reconstruction. Hook and release mortality rates can vary by region (e.g. ocean vs. Puget Sound), fishery type (commercial troll vs. sport), and gear type (barbed hooks vs. barbless). Hook and release mortality rates assigned are usually based on an 'average' value from a variety of separate studies. The PFMC Salmon Technical Team (STT) last reviewed these studies on sport fishery hooking mortality in March 2000 and the Council adopted their recommendation to changed to 14% from 8% in Council managed fisheries. Because of the difficulty in designing experimental tests, few studies address 'hook and line drop-off' and 'net drop-out' These are mortality types caused by gear contact with fish that are not brought to the boat. Drop-off and drop-out mortality may also includes marine mammal predation on gear entangled fish and loss from noncompliance with regulations. In FRAM, drop-off and drop-out rates were based on primarily on agreed values rather than from specific studies. Hook and line drop-off mortality rates are calculated as 5% of landed catch. Net drop-out mortality rates vary between 0-3% of landed catch depending on whether gear is purse seine, gill net or reef net.

3. CALIBRATION

3.1 Overview

The FRAM is one of many salmon fishery simulation models that rely on recoveries of CWTs to estimate stock specific catches, escapements, and exploitation rates. Stock-specific fishery harvests and exploitation rates are predicted using base period CWT recovery data from fishery and escapement sampling. The FRAM base period for Chinook salmon covers CWT recoveries for releases from brood years 1974-79. For stocks without representative CWT release groups during the base period, OOB CWT groups were used and their recoveries were simulated back into the base period in a process of calibration. Calibration involves iterative passes adjusting CWT recoveries for OOB tag groups back to the base period using FRAM derived fishery effort scalars from FRAM "validation" runs (Figure 1). FRAM validation runs are annual model runs which use best post-season estimates of fishery catches and stock abundances. Base period and OOB CWT recoveries by stock, age, and fishery are used to recalculate starting cohort sizes for all stocks during the base period. The final step in the calibration cycle is the development of a completed "base period" input file used by FRAM. This file contains stock abundances, time-age-fishery specific harvest rates, maturation rates, growth rates, and various fishery related parameters such as hooking mortality rates covering the base period considered roughly 1977-1984 fishing years. Calibration is considered "done" usually after at least 3 passes when the difference in cohort sizes, terminal run sizes and fishery harvest rates between passes changes insignificantly. A new calibration of FRAM is warranted when there are changes to the input data and/or model structure. Examples include changes to stocks, fisheries, CWT groups, time structure, and growth, natural, and fishery related handling mortality rates. All of these elements influence the estimates of the cohort sizes calculated during cohort analysis and the corresponding estimates of exploitation rates.

3.2 Calibration Iteration Process and Out-of Base Simulation

For FRAM, the primary purpose of a calibration pass is to create a CWT recovery data set that contains the number of CWT recoveries for stocks that were tagged in the base period with a simulated number of CWT recoveries for those stocks that were not tagged during the base period.

A calibration cycle involves producing annual FRAM "validation" runs for the fishing years that cover the associated brood years of the OOB stock groups. Validation runs are made with FRAM base period input file of stock/age specific cohort sizes, exploitation rates, growth functions, fishery related mortality parameters, etc and best estimates of yearly actual stock abundances and reported fishery catches and/or effort scalars. These validation runs could be considered as annual post season FRAM runs that contain best post-season estimates of annual stock abundance and reported fishery catches or effort by FRAM strata. Validation runs are used to derive fishery effort scalars relative to the FRAM base period for each of the FRAM fisheries. The annual fishery effort scalars are converted to age specific brood year fishery scalars (i.e. 1985 FRAM validation run provides fishery effort scalar for 1983 CWT brood year age-2 recoveries; 1982 CWT brood year age-3 recoveries etc). The brood year specific fishery scalars are applied to the corresponding OOB CWT recoveries in each fishery to yield an estimate of the number of CWTs that would have been recovered for that stock during the base period. The simulated CWT recoveries from the OOB stocks are combined with the base period stock CWT recoveries to create a "All-Stocks" CWT recovery data set. This "All-Stocks" CWT data set is then run through a datachecking program (CHDAT) and then a program (CHCAL) that conducts a cohort analysis for each stock and produces a final "outfile" of cohort sizes, exploitation rates, and other information that is required when running FRAM. (A detailed description of CHDAT and CHCAL presented below describes how the programs work in their two modes; OOB stock and "All-Stocks"). The outfile from the last calibration pass is run through the program SFMCHIN which splits the cohorts in half into marked and unmarked units for each stock. This is the base data file that is used in preseason FRAM runs.

A functional description of the programs and worksheets used during calibration is presented in Appendix 4.5. Stepwise instructions used during the 2005 calibration process are shown in Appendix 4.6.

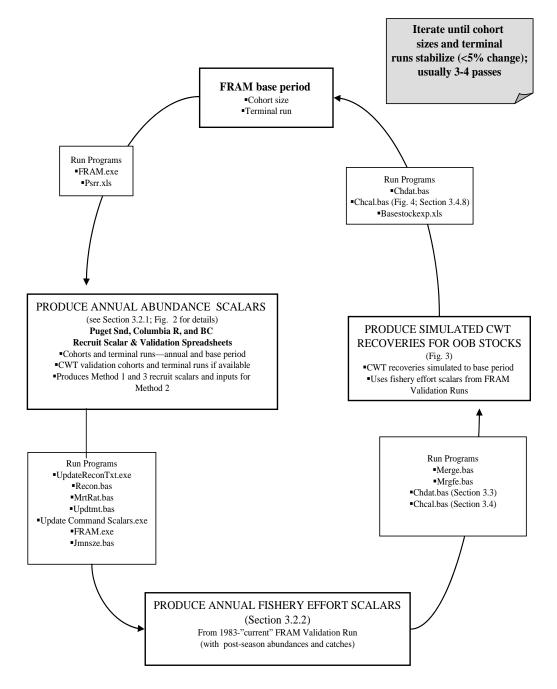


Figure 1. Chinook FRAM Calibration Overview (Section 3.1)

3.2.1 Annual Abundance Scalar Derivation

Annual abundance scalars are derived from reconstruction of the terminal run size using several methods to account for preterminal fishing impacts. Base period cohort and terminal run sizes from the most recent FRAM base period run are updated in three "validation" run abundance spreadsheets for Puget Sound, Columbia River, and Canadian stocks (Figure 2; Appendix 4.7 for example). Annual abundance scalars used in the FRAM validation runs are generated by comparing annual cohort abundances to the base period cohort abundances calculated in the most recent calibration iteration. Annual pre-fishing cohort abundances for model-run years outside the base period are derived via three methods:

Method 1. Annual Cohort Estimated from CWT Cohort Analysis

From a cohort analysis using on-going CWT tagging studies, an expansion factor was estimated by dividing the CWT terminal run by age by total CWT cohort size. The expansion factor was then multiplied by the terminal run by age of all hatchery and natural production to get total cohort size by age. This method provides the most direct, independent estimate of cohort size since stock specific CWT recoveries are used to expand the terminal run to initial cohort abundance.

Method 2. Annual Cohort Estimated from Change in Preterminal Exploitation Rate

If estimates of changes in the preterminal exploitation rates were available, the cohort was estimated by dividing the terminal run by the survival rate, maturation rate, and escapement rate. This method is similar to Method 1 except that changes in preterminal exploitation rates are estimated from data sources other than CWT recoveries such as fishing effort changes relative to the base period (such as angler-trips or vessel fishing days). For Puget Sound fall chinook stocks, the Quick Basic program RECON was used for this method.

Method 3. Annual Cohort Estimated from Change in Terminal Run

For this method, the annual abundance scalar is simply the ratio of the terminal run in the test year to the terminal run in the base period. This method assumes that preterminal exploitation rates have not changed from the base period of the model and is likely to produce overestimates of abundance, especially in recent years of reduced preterminal fishing.

Method 1 is the preferred method but is not always available for all years and all ages for many stocks. Abundance scalars for Puget Sound stocks were derived from Method 1 or Method 2; Columbia River primarily from Method 1, and Canadian stocks from Method 1 or Method 3.

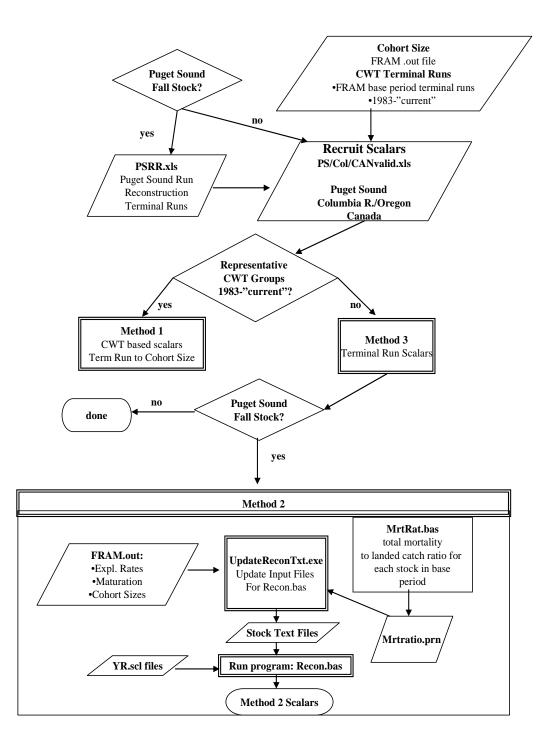


Figure 2 Chinook FRAM Validation Annual Recruit Scalar Development

There are several worksheet and file editing programs that are used during this process of updating year specific annual stock abundances and associated maturation rates including:

RECON.bas: Produces Method 2 abundance scalars.

<u>UPDATERECONTXT.vbp</u>: File editing utility for RECON input files.

<u>MRTRAT.bas</u>: Computes ratio of total mortality to landed catch from a FRAM base period model run; output is appended to RECON.bas input file.

<u>UPDATE COMMAND SCALARS.exe:</u> File editing utility that replaces abundance scalars in annual FRAM cmds with new Method 1, 2, or 3 abundance scalars from current calibration iteration.

<u>UPDTMT.bas:</u> File editing utility that replaces base period maturation rates in annual FRAM outfiles for eight Puget Sound fall stocks with year specific maturation rates derived from ongoing CWT programs.

3.2.2 Fishery Effort Scalar Derivation

After the abundance scalars in the annual validation FRAM cmd files have been updated, then each fishery year is run through FRAM and a file containing FRAM derived fishery effort scalars is produced. The file utility program JMNSZE reformats four successive years of FRAM runs of annual fishery effort scalars into single brood year files of fishery effort scalars for separate ages 2-5.

3.2.3 OOB CWT Expansion

After age specific brood year based fishery effort scalars have been derived, then OOB CWT recoveries for each fishery, age, and time step are expanded by corresponding scalars to yield an estimate of the number of CWTs that would have been recovered during the base period fishery. Two programs, CHDAT and CHCAL, are used to perform these expansions and are described in the next section. Simulated CWT recoveries from each brood year release are combined into a single data set using MERGE for OOB groups or MRGFE for stocks with both OOB groups and base period CWT groups (as in Fraser Early and Juan de Fuca). A final adjustment to the terminal area CWT recovery data set for some stocks is made by inserting certain adjusted CWT recoveries into another series of worksheets (see Appendix 4.7 for excerpt from PSbasestockexp.xls).

3.3 Primary Calibration Program: CHDAT

CHDAT

The primary purpose of CHDAT is simple error checking of data and reformatting of calibration input data for use by other programs (Figure 3). Error checking includes flagging situations were CWT recoveries exist in fisheries where no legal size population should exist. Other program functions are to 'impute' CWT recoveries in fisheries with no sampling during the CWT recovery period. For example,

CHDAT is used for both OOB simulation (Figure 3) and "All-Stocks" base period data development (Figure 4). First, CHDAT is run separately for each OOB stock in FRAM. Each OOB stock requires a separate run through CHDAT to have the data reformatted for use in another program which estimates base cohort information for each OOB stock. The final run of CHDAT uses the input files (".chk", ".cwt") covering all modeled stocks to produce the corresponding input files (".cal", ".edt") for CHCAL.

3.3.1 CHDAT Input file description – ".CHK" file

CHK File Section 1: Input File Names and Global Model Constants

The data in this section of the CHK file, with the exception of line 2 is not modified by CHDAT in any way, but is simply copied to the CAL output file for further processing. Line 2 is replaced with the name of a modified file of CWT recoveries (see below)

TULALIP FALL FING 86 - RETURN TO	Title
BASE FILE	
TUL8605.CWT	Name of CWT recovery file
Y	Adjust to base period
BROOD864.SCL	File with exploitation rate scale factors – only
	included if line above = Y
10	Number of stocks in calibration if third line =
	N, Stock number if third line $=$ Y
73	Number of fisheries in calibration
3	Number of time steps per year
5	Maximum age
4	Maximum age for encounter rate adjustment
0.01	Convergence tolerance

CHK File Section 2: Stock Specific Growth Parameters

Von Bertalanffy growth functions are used to describe the growth of an individual fish. For each age, separate growth curves are assumed depending on whether the fish is maturing at that age or remains an 'immature' fish. While CHDAT uses this data to estimate vulnerable population size, the data is not modified in any way but is simply passed on to the CAL file for further processing. There are 14 lines per stock (see below); the total number of lines depends on the total number of stocks being processed.

1	
982.1	LMax, Stock 1; Maturity 0 NSF
2.83	T0,Stock 1; Maturity 0
0.029	K, Stock 1; Maturity 0
0.11	CV, Stock 1; Maturity 0; Age 2
0.12	CV, Stock 1; Maturity 0; Age 3
0.09	CV, Stock 1; Maturity 0; Age 4
0.09	CV, Stock 1; Maturity 0; Age 5
1085.2	LMax, Stock 1; Maturity 1
1.59	T0, Stock 1; Maturity 1
0.03	K, Stock 1; Maturity 1
0.11	CV, Stock 1; Maturity 1; Age 2
0.11	CV, Stock 1; Maturity 1; Age 3
0.11	CV, Stock 1; Maturity 1; Age 4
0.11	CV, Stock 1; Maturity 1; Age 5
982.1	LMax, Stock 2; Maturity 0 NNN
	*
	*
0.13	CV, Stock n, Maturity 1;Age 5

CHK File Section 3: Terminal Fishery Flags

This section lists, by FRAM time step, fisheries which are deemed 'terminal' for the stock or stocks being analyzed. By definition, a fish caught in a terminal fishery is mature. The information in this section is not modified in any way by CHDAT, but is passed through to the CAL file for further processing. The data is used in CHDAT to determine which growth curve (mature or immature) should be associated with a fishery. The number of lines in this section is variable, depending upon the number of fisheries deemed terminal in each time step

3	Step 1; Number of Terminal Fisheries;	
28	Columbia River Net	
72	Freshwater Sport	
73	Freshwater Net	
5	Step 2; Number of Terminal Fisheries;	
28	Columbia River Net	
46	NT Skagit Net	
47	T Skagit Net	
72	Freshwater Sport	
73	Freshwater Net	
23	Step 3; Number of Terminal Fisheries	
	*	
	*	
	*	

CHK File Section 4: Minimum Size Limits

The section lists, by fishery, minimum size limits in millimeters, one line for each fishery. Size limits are for fork length, and can vary by time step. None of the data in this section is changed, but is simply passed to the CAL file. The data is used in CHDAT along with the growth curve information in Section 2 to estimate the proportions of each age class that are above and below the size limit.

670	670	670	670	Fishery 1 (Alaska Troll)
100	100	100	100	Fishery 2 (Alaska Net)
670	670	670	670	Fishery 3 (Alaska Sport)
100	100	100	100	Fishery 4 (N/C BC Net)
	*			
	*			
	*			
100	100	100	100	Fishery 73 (Freshwater Net)

CHK File Section 5: Natural Mortality Rates

Natural mortality rates by age and time step are listed. The rates are simply the fraction of the starting cohort that dies before fishing begins. The data is not modified in CHDAT but is simply copied to the CAL file for use in other calibration programs.

0.2577	Step 1; Age 2
0.1878	Step 1; Age 3
0.1221	Step 1; Age 4
0.0596	Step 1; Age 5
0.0816	Step 2; Age 2
0.0577	Step 2; Age 3
0.0365	Step 2; Age 4
0.0174	Step 2; Age 5
0.1199	Step 3; Age 2
0.0853	Step 3; Age 3
0.0543	Step 3; Age 4
0.0260	Step 3; Age 5

CHK File Section 6: Shaker Mortality Rates

Shaker mortality rates by fishery are listed, one fishery per line. The information is not used in CHDAT but is simply copied to the CAL file for use in other calibration programs. The rate is simply the fraction of the sub-legal population which dies after encountering the gear as a direct result of the encounter.

0.255	Fishery 1 (Alaska Troll TCCHINOOK (97)-1)
0.3	Fishery 2 (Alaska Net)
0.123	Fishery 3 (Alaska Sport TCCHINOOK (97)-1)
0.3	Fishery 4 (N/C BC Net)
	*
	*
	*
0.3	Fishery 73 (Freshwater Net)

CHK File Section 7: 'Other' Mortality Rates

Mortality rates by fishery are listed, one fishery per line. The information is not used in CHDAT but is simply copied to the CAL file for use in other calibration programs. The rate is simply the fraction of all encounters, including legal encounters, which die as a result of the encounter. Mortalities due to marine mammal predation are in this category.

0.008	Fishery 1 (Alaska Troll TCCHINOOK (97)-1)
0.03	Fishery 2 (Alaska Net)
0.036	Fishery 3 (Alaska Sport TCCHINOOK (97)-1)
0.03	Fishery 4 (N/C BC Net)
	*
	*
	*
0.02	Fishery 73 (Freshwater Net WDFW and Tribes)

CHK File Section 8: Encounter Rate Adjustment Factors

FRAM has the capability to adjust estimated total encounter rates to match independent estimates of Chinook encounters in a fishery by using externally computed adjustment factors. The factors are both fishery and time period specific. The adjustment factors are not used in any computations within CHDAT, but are simply written to the CAL file for possible use in other calibration programs.

1.0900	Step 1; Fishery 1 (Alaska Troll)	
-1.0000	Step 1; Fishery 2 (Alaska Net)	
2.6200	Step 1; Fishery 3 (Alaska Sport)	
-1.0000	Step 1; Fishery 4 (N/C BC Net)	
	*	
	*	
	*	
-1.0000	Step 3; Fishery 73 (Freshwater Net)	

CHK File Section 9: Chinook Non-retention Data

The section contains data, by time step, for Chinook non-retention (CNR) fisheries. The data includes the fishery number of the non-retention fishery, and a flag to indicate the method to use to estimate CNR mortalities. CHDAT uses this information for error checking, but the data are not changed in any way, and are simply written to the CAL file for use in other calibration programs. The number of lines of data depends on the number of CNR fisheries in each time step. In this example, there are no CNR fisheries in any time step.

0	Step 1; Number of CNR fisheries
0	Step 2; Number of CNR fisheries
0	Step 3; Number of CNR fisheries

CHK File Section 10: Base Period Catches

This section contains data on the base period average annual catch in each FRAM fishery. A zero indicates that the base period average catch is not available. Also on each line is a flag signaling various options to adjust the estimated catch by stock to match the total catch in a fishery. Neither the catch information nor the option flag are used in CHDAT; both are simply passed to the CAL file for use in other programs.

283,260	2	1-Southeast Alaska Troll
25,117	2	2-Southeast Alaska Net
20,472	2	3-Southeast Alaska Sport
115,266	2	4-N/C BC Net
	*	
	*	
	*	
0	0	73-Freshwater Net

CHK File Section 11: Imputed Recoveries

This section contains data and instructions to CHDAT necessary to 'impute' recoveries from a fishery with CWT sampling (e.g. WCVI troll) to a fishery without CWT sampling (WCVI Sport Imputed Fishery). The procedure is used to 'fill in' missing recovery data in the CWT recovery file. Data in this section is used only by the CHDAT program and is written to a file for use in other programs.

8	Number of fisheries to impute recoveries
1	Impute Group 1
11	WCVI Sport Imputed Fishery
10	WCVI Troll
	*
	*
	*
8	Impute Group 8
70	NT Area 13A Net Imputed Fishery
71	T Area 13A Net

3.3.2 CHDAT Input file description – ".CWT" file

The CWT file has two sections, one listing base period escapements by stock, the second section lists CWT recoveries by stock, age, fishery, and time period. If line 3 of the CHK file = Y, data for only one stock (OOB) is present in the file. If line 3 of the CHK file = N, data for all stocks are present.

CWT File Section 1: Base Period Escapements

Base period escapements for one or more stocks are input in this section. The data here are not used by the CHDAT program, but are simply echoed to the EDT output file.

20,224	1 Nooksack/Samish Fall
500	2 NF Nooksack Spr
500	3 SF Nooksack Spr
	*
	*
	*
100	33 White Spring Yearling

CWT File Section 2: CWT Expanded Recoveries

CWT recoveries by stock, age, fishery, and time period are input from the remainder of the CWT file. The general form of the data is shown below. As a rule, CHDAT does not modify this data, but simply echoes it to the EDT file for use by other programs. Two exceptions to this occur, however. First, if a recovery exists where no legal size population is available, that recovery is rejected. Second, if a fishery recovery is to be imputed, one or more lines for the imputed fishery are inserted into the EDT file.

SP	ST	AG	FSH	TP	Catch	Adj Esc		
1	1	2	5	2	8.44		May-June	West Coast Vancouver Island Net
1	1	2	14	2	68.27		May-June	South Georgia St. Sport
1	1	3	4	3	144.75		July-Sept	North/Central British Columbia Net
1	1	3	5	3	47.01		July-Sept	West Coast Vancouver Island Net
					*			
					*			
					*			
1	33	12	74	3	3.21	3.21	Jul-Sep	Escapement

a/ "AG" is index age see Appendix 4.7

3.3.3 CHDAT Program Flow and Calculations

Notation

AnnSRate_a Annual survival rate at age.

a Age in years (2 to 5) 'Birthday' is assumed to occur on October 1.

CV_{s,a} Coefficient of variation in Length at age (input from section 2 of the CHK file)

t Time step – there are 3 time steps per 'year' Oct – Apr, May – June, and July – Sept.

s Stock number. There are currently 33 stocks in the model

f Fishery number. There are currently 74 fisheries in the model

*CWTCatch*_{*s,a,f,t*} Observed CWT recoveries expanded for sampling fraction (input from section 2 of the CHK file.

 $CWT_{s,4,f,t}$ Expanded CWT recoveries for age 4

*DFCohort*_{*s*,*a*}Total number of CWT fish alive, before natural mortality.

*DFER*_{*s*,*f*}Fraction of *DFCohort*_{*s*,*a*} caught in a fishery.

 K_s Parameter of the von Bertalanffy growth curve (input from section 2 of the CHK file)

 L_{∞} Parameter of the von Bertalanffy growth curve (input from section 2 of the CHK file)

 $Mean_{s.a,t}$ Mean fork length.

 $SD_{s,a}$ Standard Deviation

 T_0 Parameter of the von Bertalanffy growth curve (input from section 2 of the CHK file)

 $TotCWTCatch_{s,a}$ Total catch of CWTed fish, expanded for sampling fraction, across all fisheries (terminal and preterminal).

Depending on options chosen or defined by the form of the input files, CHDAT performs the following functions.

1) Pass-through and rearrangement of data.

Data in the CHK file is rearranged and output to the CAL file. Data in the CWT file is rearranged and if it passes simple error checking outputs to the EDT file.

2) Simple error checking.

Two types of error checking occur. The first checks that a legal (above the size limit) population of a stock/age combination is available to a fishery if CWT recoveries for that stock exist in that fishery. If no legal population is estimated to exist, the recovery data is not written to the EDT file.

The 'legal proportion' is estimated by first computing the stock mean length at age using the input growth data and the von Bertalanffy growth function.

$$Mean_{s,a,t} = L_{\infty_s} * (1 - e^{-k_s(t-t_0)})$$

The Standard Deviation at age of the mean length is computed as:

 $SD_{s,a,t} = Mean_{s,a,t} * CV_a$

Finally, if the size limit in the fishery is more than three standard deviations above the mean length at age of the stock, the population available to the fishery is assumed to be zero. In this case, an error message is generated and the CWT recovery information is not written to the EDT file for future use.

3) 'Imputing of CWT recoveries in specified fisheries

On occasion, a fishery may not have been sampled for CWT recoveries, while a fishery 'near' it was. In those cases, it can be desirable to use the sampled fishery to represent the stock composition of the unsampled fishery. The imputed recoveries are computed as:

$$CWTCatch_{s,a,f1,t} = \frac{CWTCatch_{s,a,f2,t}}{1000}$$

The imputed catches are written to the EDT file.

4) Setting of Shaker Inclusion Flags (designates stock-fisheries where shaker mortality rates are calculated).

Shaker inclusions flags are set using the following procedure:

1) Sum CWT recoveries across all fisheries and time steps.

$$TotCWTCatch_{s,a} = \sum_{f,t} CWTCatch_{s,a,f,t}$$

2) Estimate the starting cohort size for the oldest age class.

$$DFCohorts_{s,5} = \frac{TotCWTCatch_{s,5}}{AnnSRate_5}$$

3) Estimate the starting cohort for the younger age classes.

$$DFCohort_{s,a} = \frac{DFCohort_{s,a+1} + TotCWTCatch_{s,a}}{AnnSRate_{a}}$$

4) Assuming age 4 are fully vulnerable to legal size limits, estimate the age 4 exploitation rate by stock and fishery as:

$$DFER_{s,f,4} = \frac{\sum_{t} CWT_{s,4,f,t}}{DFCohort_{s,4}}$$

Within a fishery, for the n stocks with non-zero age 4 exploitation rates, the .7*n stocks with the highest age 4 exploitation rates have their Shaker Inclusion flags set to true. The flags are then written to the bottom of the CAL file.

3.3.4 CHDAT Output File Descriptions -". CAL" file

The CAL file is identical to the input CHK file except that the last section (Section 11) of the CHK file, where instructions for imputing recoveries are replaced with Shaker Inclusion flags. There is one line for each stock/fishery combination.

0	Stock 1; Fishery 1;
0	Stock 1; Fishery 2;
0	Stock 1; Fishery 3;
0	Stock 1; Fishery 4;
	*
	*
	*
1	Stock 33; Fishery 73

3.3.5 CHDAT Output File Descriptions –". EDT" file

Like the CWT input file, the EDT file has two sections. The first section contains data on base period escapements, and is identical to the same section in the CWT file. The second section contains the CWT recovery information and is similar, but not identical to, the same section in the CWT file. The differences between the sections are: 1) All escapement recoveries have been moved to the top of the CWT recovery section of the file, 2) Recoveries from stock/age/fishery combinations where no vulnerable (above the size limit) population exists are removed, and 3) Imputed recoveries by stock, age, fishery, and time step are added. The form of the second section of the EDT file is shown below.

SP	STK	AGE	FSH	TIM	RECOVERIES
1	1	2	74	3	71.3
1	1	3	74	1	0.0
1	1	3	74	3	392.2
1	1	4	74	1	0.0
			*		
			*		
			*		
1	33	4	74	3	26.01

3.3.6 CHDAT Output File Description – ".ERR" File

The ERR file lists details of any recoveries rejected because no vulnerable population existed for that stock/fishery/age combination, and flags situations where Chinook non-retention fisheries exist but no legal Chinook catch information is available in the same year. Currently, no procedure exists within FRAM to estimate CNR incidental mortalities without data from a directed fishery in that year.

3.4 Primary Calibration Program: CHCAL

CHCAL

The primary purpose of the CHCAL program is to complete cohort analyses for each stock in the FRAM model and estimate 'base period' exploitation rates by stock, fishery, FRAM time period, and age. Secondary purposes include estimation of the proportion of the catch in each fishery accounted for by stocks in the model, and estimating CWT recoveries that would have occurred for OOB stocks during the model base period using "backward" and "forward" CWT cohort reconstruction simulation. A simple example of backward and forward cohort reconstruction calculations is shown in Appendix 4.8.

CHCAL operates in two different modes depending on whether it is doing an OOB analysis on one stock (Figure 3, described in Sections 3.4.5-3.4.7) or it is completing a final cohort analysis during an "All-Stocks" run (Figure 4, described in Section 3.4.8-3.4.9). The number of input files used and the type of output generated is a function of the run type (OOB or "All-Stocks"), therefore each type of run will be described separately.

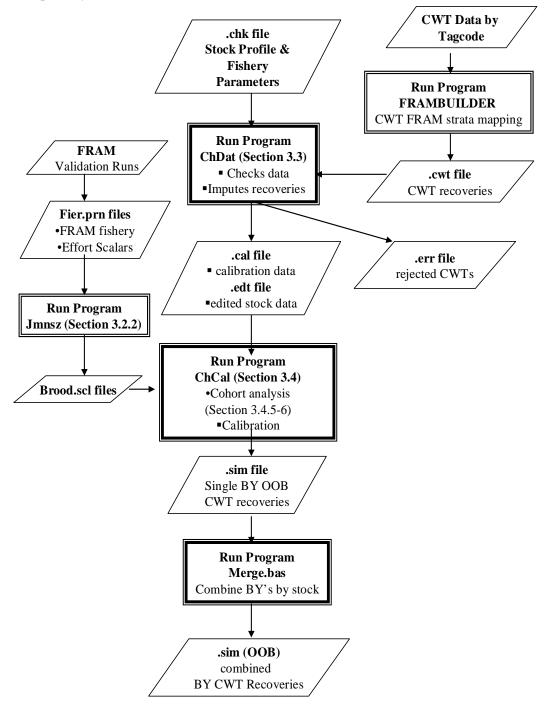


Figure 3. Chinook FRAM Calibration Cycle for OOB Stocks

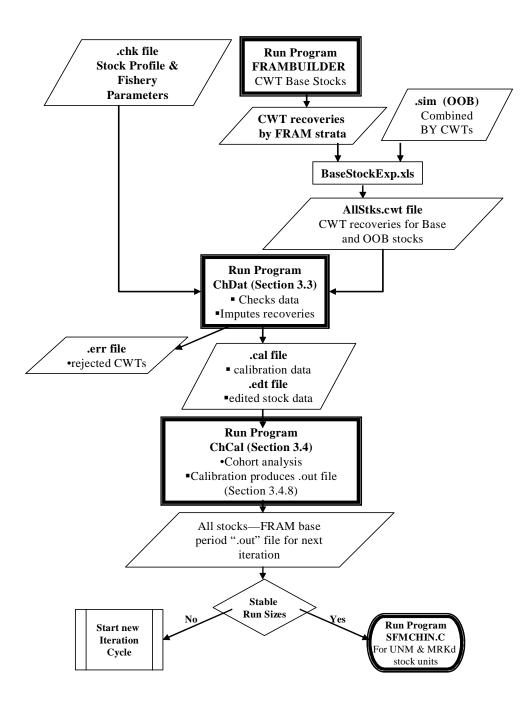


Figure 4. Chinook FRAM Calibration for "All-stock" Base Data Development

3.4.1 CHCAL Input file description – ".CAL" file (from CHDAT)

CAL Section 1: Input File Names and Global Model Constants

The data in this section of the CAL file contains global information such as the names of other input files, the 'type' of run, and a number of constants related to model setup. If the third line = 'Y', the run is an 'OOB' run and the next line must contain the name of an input file containing exploitation rate scale factors. If the third line = 'N', the additional input file is not needed and the line below is omitted.

TULALIP FALL FING 86 - RETURN TO	Title
BASE FILE	
TUL8605.EDT	Name of CWT recovery file
Y	Adjust to base period
BROOD864.SCL	File with exploitation rate scale factors – only
	included if line about = Y
10	Number of stocks in calibration if third line =
	N, Stock number if third line = Y
73	Number of fisheries in calibration
3	Number of time steps per year
5	Maximum age
4	Maximum age for encounter rate adjustment
0.01	Convergence tolerance

CAL Section 2: Stock Specific Growth Parameters

Von Bertalanffy growth functions are used to describe the growth of an individual fish. For each age, separate growth curves are assumed depending on whether the fish is maturing at that age or remains an 'immature' fish. There are 14 lines per stock; the total number of lines depends on the total number of stocks being processed.

982.1	LMax, Stock 1; Maturity 0 NSF
2.83	T0,Stock 1; Maturity 0
0.029	K, Stock 1; Maturity 0
0.11	CV, Stock 1; Maturity 0; Age 2
0.12	CV, Stock 1; Maturity 0; Age 3
0.09	CV, Stock 1; Maturity 0; Age 4
0.09	CV, Stock 1; Maturity 0; Age 5
1,085.2	LMax, Stock 1; Maturity 1
1.59	T0, Stock 1; Maturity 1
0.03	K, Stock 1; Maturity 1
0.11	CV, Stock 1; Maturity 1; Age 2
0.11	CV, Stock 1; Maturity 1; Age 3
0.11	CV, Stock 1; Maturity 1; Age 4
0.11	CV, Stock 1; Maturity 1; Age 5
982.1	LMax, Stock 2; Maturity 0 NNN
	*
	*
	*
0.13	CV, Stock n, Maturity 1;Age 5

CAL Section 3: Terminal Fishery Flags

This section lists, by FRAM time step, fisheries which are deemed 'terminal' for the stock or stocks being analyzed. By definition, a fish caught in a terminal fishery is mature. The data is used in CHCAL to determine which growth curve (mature or immature) should be associated with a fishery. The number of lines in this section is variable, depending upon the number of fisheries deemed terminal in each time step.

3	Step 1; Number of Terminal Fisheries;			
28	Columbia River Net			
72	Freshwater Sport			
73	Freshwater Net			
5	Step 2; Number of Terminal Fisheries;			
28	Columbia River Net			
46	NT Skagit Net			
47	T Skagit Net			
72	Freshwater Sport			
73	Freshwater Net			
23	Step 3; Number of Terminal Fisheries			
	*			
	*			
	*			

CAL Section 4: Minimum Size Limits

The section lists, by fishery, minimum size limits in millimeters, one line for each fishery. Size limits are for fork length, and can vary by time step. The data is used in CHCAL along with the growth curve information in Section 2 to estimate the proportions of each age class that are above and below the size limit.

670	670	670	670	Fishery 1 (Alaska Troll)
100	100	100	100	Fishery 2 (Alaska Net)
670	670	670	670	Fishery 3 (Alaska Sport)
100	100	100	100	Fishery 4 (N/C BC Net)
	*		*	
	*		*	
	*		*	
100	100	100	100	Fishery 73 (Freshwater Net)

CAL Section 5: Natural Mortality Rates

Natural mortality rates by age and time step are listed. The rates are simply the fraction of the starting cohort that dies before fishing begins.

0.2577	Step 1; Age 2
0.1878	Step 1; Age 3
0.1221	Step 1; Age 4
0.0596	Step 1; Age 5
0.0816	Step 2; Age 2
0.0577	Step 2; Age 3
0.0365	Step 2; Age 4
0.0174	Step 2; Age 5
0.1199	Step 3; Age 2
0.0853	Step 3; Age 3
0.0543	Step 3; Age 4
0.0260	Step 3; Age 5

CAL Section 6: Shaker Mortality Rates

Shaker mortality rates by fishery are listed, one fishery per line. The rate is simply the fraction of the sublegal population which dies after encountering the gear as a direct result of the encounter.

0.255	Fishery 1 (Alaska Troll TCCHINOOK (97)-1)
0.3	Fishery 2 (Alaska Net)
0.123	Fishery 3 (Alaska Sport TCCHINOOK (97)-1)
0.3	Fishery 4 (N/C BC Net)
	*
	*
	*
0.3	Fishery 73 (Freshwater Net)

CAL Section 7: 'Other' Mortality Rates

Mortality rates by fishery are listed, one fishery per line. The rate is simply the fraction of the all encounters, including legal encounters, which die as a result of the encounter. Mortalities due to marine mammal predation are in this category.

0.008	Fishery 1 (Alaska Troll TCCHINOOK (97)-1)
0.03	Fishery 2 (Alaska Net)
0.036	Fishery 3 (Alaska Sport TCCHINOOK (97)-1)
0.03	Fishery 4 (N/C BC Net)
	*
	*
	*
0.02	Fishery 73 (Freshwater Net WDFW and Tribes)

CAL Section 8: Encounter Rate Adjustment Factors

Encounter Rate Adjustment Factors are externally estimated as the ratio of Sublegal Encounters to Legal encounters in a fishery. They are used in the estimation of shaker mortalities. The factors are both fishery and time period specific.

1.0900	Step 1; Fishery 1 (Alaska Troll)		
-1.0000	Step 1; Fishery 2 (Alaska Net)		
2.6200	Step 1; Fishery 3 (Alaska Sport)		
-1.0000	Step 1; Fishery 4 (N/C BC Net)		
	*		
	*		
	*		
-1.0000	Step 3; Fishery 73 (Freshwater Net)		

CAL Section 9: Chinook Non-retention Data

The section contains data, by time step, on Chinook non-retention (CNR) fisheries. The data includes the fishery number of the non-retention fishery, and a flag to indicate the method to use to estimate CNR mortalities. The number of lines of data depends on the number of CNR fisheries in each time step. In this example, there are no CNR fisheries in any time step.

0	Step 1; Number of CNR fisheries
0	Step 2; Number of CNR fisheries
0	Step 3; Number of CNR fisheries

CAL Section 10: Base Period Catches

This section contains data on the base period annual catch in each FRAM fishery. A zero indicates that the base period average catch is not available. Also on each line is a flag signaling various options to adjust the estimated catch by stock to match the total catch in a fishery.

283,260	2	1-Southeast Alaska Troll
25,117	2	2-Southeast Alaska Net
20,472	2	3-Southeast Alaska Sport
115,266	2	4-N/C BC Net
	*	
	*	
	*	
0	0	73-Freshwater Net

CAL Section 11: Shaker Inclusion Flags

There is one line for each stock/fishery combination. A zero means do not include the stock when computing shaker mortalities in that fishery, a one indicates that the stock should be included.

0	Stock 1; Fishery 1;	
0	Stock 1; Fishery 2;	
0	Stock 1; Fishery 3;	
0	Stock 1; Fishery 4;	
	*	
	*	
	*	
1	Stock 33; Fishery 73	

3.4.2 CHCAL Input file description -". EDT" file (from CHDAT)

EDT Section 1: Base Period Escapements

If the run is an 'OOB' run, this section simply lists the name of the OOB stock being analyzed and a flag indicating that no base period escapement data exists.

Total Base Period Esca	pement	
-1 , Tulalip 86 bro	1	

If the run is not an OOB run, the section contains the average base period escapement for each stock.

20,224	1 Nooksack/Samish Fall
500	2 NF Nooksack Spr
500	3 SF Nooksack Spr
10,443	4 Skagit Summer Fall Fingerling
	*
	*
	*
100	33 White Spring Yearling

EDT Section 2: CWT recoveries by stock, age, fishery, and time period.

This section of the input file is the same for both types of run. The only difference being that an OOB run contains recovery data from years outside the base period for only one stock, while a non OOB run contains observed or computed data for all stocks during the base period.

SP	STK	AGE	FSH	TIM	RECOVERIES
1	1	2	74	3	71.3
1	1	3	74	1	0.0
1	1	3	74	3	392.2
1	1	4	74	1	0.0
			*		
			*		
			*		
1	33	4	74	3	26.01

3.4.3 CHCAL Input file description –". SCL" file (from FRAM validation runs for OOB)

The SCL file, which is used only for OOB simulation (Figure 3), is produced from the FRAM validation runs using the program JMNSZE (Section 3.2.2). Each SCL file is brood year specific and contains exploitation rate scale factors for each age, fishery and time period. The scale factors represent the ratio of the fishery exploitation rates in the 'current' year to the average fishery exploitation rates during the base period. The data is used when reconstructing base period cohorts and exploitation rates for an OOB stock.

Age 2 (1988) Exploitation Rate Scale Factors	
0.2879	Step 1; Fishery 1 (SEAK Troll)
0.0000	Step 1; Fishery 2 (SEAK Net)
0.6719	Step 1; Fishery 3 (SEAK Sport)
0.0000	Step 1; Fishery 4 (N/C BC Net)
	*
	*
	*

The SCL file also contains size limits for years corresponding to the scale factors. The format of this size limit section of the SCL file is identical to the format of section 4 of the CAL file.

3.4.4 CHCAL Variables and Notation

a	Age in years (2 to 5) 'Birthday' is assumed to occur on October 1.
$AEQ_{s,a,t}$	Adult Equivalence by stock, age, and time step. The probability that a fish will survive to spawn in the absence of future fishing (output to the OUT file).
$BPEscap_{es,a,t}$	Base period CWT recoveries by stock, age, and time step in escapement estimated using forward cohort analysis and exploitation rate scale factors (output to the SIM file for inclusion in the all stocks CHCAL run).
$BPObsCatch_{f}$	Observed catch by fishery during the base period (input from section 10 of the CAL file).
BPPTCatch _{s,a,f,t}	Base period CWT recoveries in preterminal fisheries by stock, age, and time step estimated using forward cohort analysis and exploitation rate scale factors (output to the SIM file for inclusion in the all stocks CHCAL run).
$BPTermCatch_{s,a,f,t}$	Base period CWT recoveries in terminal fisheries by stock, age, and time step estimated using forward cohort analysis and exploitation rate scale factors (output to the SIM file for inclusion= in the all stocks CHCAL run).
CNRMort _{ss,a,f,t}	Non-retention mortalities by stock, age, fishery, and time step.
$CV_{s,a}$	Coefficient of variation in length-at-age by stock and age (input from section 2 of the CAL file).
$CWTCatch_{s,a,f,t}$	Observed CWT recoveries by stock, age, fishery, and timestep expanded for sampling fraction (input from section 2 of the CWT file).
$CWTEscape_{s,a,t}$	<i>CWTs by stock, age, and time step recovered in escapement past all fisheries expanded for sampling fraction (input from section 1 of the CWT file).</i>
DropOfff	Dropoff mortality rate by fishery (input from section 7 of the CAL file).
$EncAdj_{f,t}$	Encounter Rate Adjustment factor by fishery and time step (input from section 8 of the CAL file (output to the OUT file).
$ExpRate_{s,a,f,t}$	The fraction of the vulnerable cohort by stock, age, fishery, and time step, after natural mortality, taken as catch in a fishery.
f	Fishery number. There are currently 74 "fisheries" in CHCAL where fishery 74 is the number of CWT recoveries in escapement.
K_s	Stock specific parameter of the von Bertalanffy growth curve (input from section 2 of the CAL file).
$T\infty^{s}$	Stock specific parameter of the von Bertalanffy growth curve (input from section 2 of the CAL file).
LandedCatch _{s,a,f,t}	Estimated total catch of a stock in a fishery by age and time step. CWTCatch.
LegalProp _{s,a,f,t}	Proportion of the cohort (terminal or preterminal) which is above the legal size limit by stock, age, fishery, and time step.

MatCohort _{s,a,t}	The 'mature' cohort, i.e., the number of fish by stock, age, and time step destined
	to spawn in the current year in the absence of further fishing.
$MatRate_{s,a,t}$	The fraction of the cohort by stock and age that matures in a given time step.
$Mean_{s,a,t}$	Mean fork length of a fish by stock, age, and time step.
$MinSize_{a,f,t}$	Minimum size limit in a fishery by age, fishery, and timestep. The age subscript
<i>u</i> , <i>j</i> , <i>i</i>	is carried but not used in computations (input from section 4 of the CAL file).
ModelRatiof	The proportion of the observed catch in a fishery that can be accounted for by stocks in the model (output to the OUT file as Recovery Adjustment Factor).
PEFs	Stock specific Production Expansion Factor. The ratio of total stock escapement to the escapement of the CWTed population.
<i>PTCohort</i> _{s,a,t}	The preterminal (immature) ocean cohort size by stock, age, and time step.
$PTMorts_{s,a,t}$	Total mortalities of CWTed fish in preterminal fisheries by stock, age, and time
1 1 1 1 1 1 1 1 1 1	step.
S	Stock number. There are currently 33 stocks in the model.
ScaleFactor _{f,t}	Fishery and time step specific ratio of fishery exploitation rate during the CWT
Scaler actor _{f,t}	recovery year to the fishery exploitation rate during the base (input from the SIM
	file).
$SD_{s,a}$	Standard Deviation by stock and age of the total length distribution of a fish.
$SD_{s,a}$ Shakers _{s.a.f.t}	Total mortalities of sublegal fish by stock, age, fishery, and time step.
ShakEnc _{s,a,f,t}	The fraction of the sublegal cohort, after natural mortality, encountered in a
ShukEnc _{s,a,f,t}	fishery by stock, age, fishery, and time step.
ShakMortRate _f	Fishery specific shaker mortality rate (input from section 6 of the CAL file).
$SLProp_{s,a,f,t}$	The proportion, by stock and age, of the total sublegal population across all
$SLI TOP_{s,a,f,t}$	fisheries in a time step which is below the legal size limit in a given fishery and
	time step.
$SRate_{a,t}$	Compliment of the natural mortality rate by age and time step (natural mortality
SKale _{a,t}	rates are input from section 5 of the CAL file).
Subl approp	Proportion of the total cohort size by stock and age (terminal or preterminal)
SubLegProp _{s,a,f,t}	which is below the legal size limit in a given fishery and time step.
t	Time step. There are 3 time steps per 'year' Oct – Apr, May – June, and July –
l	Sept. Sept. There are 5 time steps per year Oct – Apr, May – 5ane, and 5aty –
$TO_{.s}$	Stock specific parameter of the von Bertalanffy growth curve (input from section
$I U_{,S}$	2 of the CAL file).
TMorts	Total mortalities of CWTed fish in terminal fisheries by stock, age, and time
$TMorts_{s,a,t}$	
$Total BPEsc_s$	step. Adult total escapement by stock during the base period (input from the CWT file).
TotalCohort _{s.a.t}	The total cohort available at the start of each time period, before natural
Total Conort _{s,a,t}	
TotalSI Dom	mortality by stock, age, and time step.
$TotalSLPop_{f,t}$	The total number of sublegal fish, by time step, across stocks, available to a
	fishery.

3.4.5 CHCAL "Backward" Cohort Analysis (Age 5 backward through Age 2) for OOB stocks

CHCAL performs the following calculations during a cohort reconstruction of CWT recoveries for the OOB simulation. The first type of cohort analysis is a reconstruction of the cohort working from the age 5 CWT recoveries back through age 4, then age 3, and ending with age 2. The equations are numbered in this section and the next in order to follow the cohort reconstruction example shown in Appendix 4.8.

1) Read in all data from CHDAT output files

2) Perform a CWT cohort analysis for the OOB brood using the following procedure:

a) Compute the total number of CWT mortalities by age and time step for both terminal and preterminal fisheries.

$$PTMorts_{s,a,t} = \sum_{PTF isheries} CWTCatch_{s,a,f,t} * (1 + DropOff_{f}) + ShakMorts_{s,a,f,t} + CNRMorts_{s,a,f,t}$$

$$TMorts_{s,a,t} = \sum_{TFisheries} CWTCatch_{s,a,f,t} * (1 + DropOff_{f}) + Shakers_{s,a,f,t} + CNRMorts_{s,a,f,t}$$

b) Compute the 'terminal' or mature cohort by age and time step.

$$MatCohort_{s,a,t} = TMorts_{s,a,t} + CWTEscape_{s,a,t}$$

In the final time period, the immature cohort for the oldest age and after natural mortality is computed as:

$$PTCohort_{s,a=5,t=3} = MatCohort_{s,a=5,t=3} + PTMorts_{s,a=5,t=3}$$

The cohort size for the younger ages in the final time period is computed as:

$$PTCohort_{s,a,t=3} = \frac{PTCohort_{s,a+1,t=1}}{SRate_{a+1,t=1}} + MatCohort_{s,a,t} + PTMorts_{s,a,t}$$

The cohort size for all ages in earlier time periods is computed as :

$$PTCohort_{s,a,t} = \frac{PTCohort_{s,a,t+1}}{SRate_{a,t+1}} + MatCohort_{s,a,t} + PTMorts_{s,a,t}$$

Once an initial estimate of preterminal and terminal CWT cohort sizes have been made, incidental (shaker) and CNR mortalities by fishery, age, and time period can be estimated.

For initial iteration, assume the number of encounters is equal to the landed catch.

$$Encounters_{f,t} = \sum_{s} \sum_{a=2}^{5} CWTCatch_{s,a,f,t} * EncAdj_{f,t}$$

Compute the proportions of the cohort at age that are above and below the size limit assuming a normal distribution of fish length at age.

$$Mean_{s,a,t} = L_{\infty_s} * (1 - e^{-k_s(t - t_{0_s})})$$
$$SD_{s,a,t} = Mean_{s,a,t} * CV_{s,a}$$

 $SubLegProp_{s,a,f,t} = f(Minsize_{a,f,t}, Length_{s,a,t}), Length_{s,a,t} \sim N(Mean_{s,a,t}, SD_{s,a,t}^{2})$ LegalProp_{s,a,f,t} = 1 - SubLegProp_{s,a,f,t}

Compute the total sub-legal population.

$$TotalSLPop_{f,t} = \sum_{s} \sum_{a=2}^{5} (SubLegProp_{s,a,f,t} * Cohort_{s,a,t})$$

Where

 $Cohort_{s,a,t} = PTCohort_{s,a,t}$ for Preterminal fisheries and

 $Cohort_{s,a,t} = MatCohort_{s,a,t}$ for Terminal fisheries.

Compute the proportion of each stock and age that is sublegal.

$$SLProp_{s,a,f,t} = \frac{SubLegProp_{s,a,f,t} * Cohort_{s,a,t}}{TotalSLPop_{f,t}}$$

Now compute the number of shaker mortalities as:

$$Shakers_{s,a,f,t} = Encounters_{f,t} * SLProp_{s,a,f,t} * ShakMortRate_{f}$$
)

CNR mortalities are not generally estimated in FRAM calibration since CNR fisheries were rare during the base period. Computation details are not included in this description of CHCAL.

Now that an initial estimate of shakers is available, cohort sizes are re-estimated based on the new number of total mortalities. This continues iteratively until the change in age 2 cohort size is less than a predefined limit ('convergence tolerance', CAL file line 10). Note that at this stage we have available at the start of each time step a preterminal cohort at age and a terminal, or mature cohort at age.

3.4.6 CHCAL "Forward" Cohort Analysis (Age 2 forward through Age 5) for OOB stocks

Estimation of the recoveries that would have occurred during the base period for the OOB stock requires several steps.

Once cohort sizes are available, maturation rates by age and time step can be computed. The maturation rate for the oldest age in the final time step is assumed to be 1.0

In the last time step, compute a total cohort after fishing mortality.

$$TotalCohort_{s,a,t=3} = MatCohort_{s,a,t=3} + \frac{PTCohort_{s,a+1,t=1}}{SRate_{a+1,t=1}}$$

And the Maturation rate is simply the mature portion of the total cohort after fishing.

$$MatRate_{s,a,t=3} = \frac{MatCohort_{s,a,t=3}}{TotalCohort_{s,a,t=3}}$$

For earlier time steps, maturation rates are computed in a similar way.

$$TotalCohort_{s,a,t} = MatCohort_{s,a,t} + \frac{PTCohort_{s,a,t+1}}{SRate_{a,t+1}}$$

$$MatRate_{s,a,t} = \frac{MatCohort_{s,a,t}}{TotalCohort_{s,a,t}}$$

Compute the exploitation rate on the vulnerable (legal size) cohort estimated from the cohort analysis just performed.

$$ExpRate_{s,a,f,t} = \frac{CWTCatch_{s,a,f,t}}{Cohort_{s,a,t} * SRate_{a,t} * LegProp_{f,a,t}}$$

Now start the forward analysis to estimate CWT recoveries during the base period, beginning with the youngest age:

- 1) $PTCohort_{s,a,t} = TotalCohort_{s,a=2,t=1}$
- 2) PTCohort_{s,a,t} = TotalCohort_{s,a,t} * SRate_{a=2,t=1}
 3) BPPTCatch_{s,a,f,t} = PTCohort_{s,a,t} * LegProp_{f,a,t} * ExpRate_{s,a,f,t}/ScaleFactor_{f,t}
 4) MatCohort_{s,a,f,t} = (PTCohort_{s,a,t} ∑_{PTF} BPPTCatch_{s,a,f,t}) * MatRate_{s,a,t}
 5) BPTermCatch_{s,a,f,t} = MatCohort_{s,a,t} * LegProp_{s,a,f,t} * ExpRate_{s,a,f,t}/ScaleFactor_{f,t}
 6) BPEscape_{s,a,t} = MatCohort_{s,a,f,t} BPTermCatch_{s,a,f,t}

Now, recompute the preterminal cohort if time step is less than 3 as:

6)
$$TotalCohort_{s,a,t} = \frac{PTCohort_{s,a,t+1} - \sum_{PTF} BPPTCatch_{s,a,f,t}}{1 - MatRate_{s,a,t}}$$

or if time step =3 as:

$$TotalCohort_{s,a,t} = \frac{PTCohort_{s,a+1,t} - \sum_{PTF} BPPTCatch_{s,a,f,t}}{1 - MatRate_{s,a,t}}$$

Increment *a* by 1 and return to step 2 above.

3.4.7 CHCAL Outputs – ".SIM" file for OOB Run

Simulated base period recoveries by fishery, age, and time step (*BPPTCatch*_{*s,a,f,t*}) and *BPTermCatch*_{*s,a,f,t*}), and escapements by age and time step (*BPEscape*_{*s,a,t*}) from CHCAL in OOB mode are written to the SIM output file. The SIM files produced from individual brood year runs of CHCAL for a OOB stock are combined using MERGE to produce a single SIM file for each OOB stock.

SP	STK	AGE	FSH	TIM	RECOVERIES
1	1	2	74	3	71.3
1	1	3	74	1	0.0
1	1	3	74	3	392.2
1	1	4	74	1	0.0
			*		
			*		
			*		
1	33	4	74	3	26.01

3.4.8 CHCAL Program Flow and Calculations – All-Stocks Run

After all OOB stocks have been run through CHCAL and their base period CWT recoveries have been estimated, the data is combined with the data for all other stocks and all stocks are run through CHCAL at once. The sequence of computations for an All-Stocks run is as follows.

Estimate base period Production Expansion Factors (PEF) for each stock based on the ratio of the total adult escapement of each stock (from section 1 of the EDT file) to the total adult escapement of the CWTed stock (input from section 2 of the EDT file).

$$PEF_{s} = \frac{TotalBPEsc_{s}}{\sum_{a=3,t}^{a=5,t=3}} CWTEscape_{s,a,t}$$

Note that if a 'large' CWT group is used to represent the catch distribution of a 'small' hatchery stock, the expansion factors may be less than 1.0.

Depending on the setting of an input flag, the observed base period CWT recoveries are adjusted so that the sum across stocks of the CWT recoveries in each fishery, expanded by PEF_s , equals the total observed catch in each fishery. The adjustment formula is:

$$LandedCatch_{s,a,f,t} = CWTCatch_{s,a,f,t} * PEF_s * ModelRatio_f$$

Where

$$ModelRatio_{f} = \frac{BPObsCatch_{f}}{\sum_{s,a,t} (CWTCatch_{s,a,f,t} * PEF_{s})}$$

The adjustment flags are:

"0" - indicates CWT recoveries are not adjusted. In this case,

FRAM Chinook Base Data

 $LandedCatch_{s,a,f,t} = CWTCatch_{s,a,f,t} * PEF_s$

"1" – indicates CWT recoveries are always adjusted to sum to the total catch in the fishery; "2" – indicates CWT recoveries are adjusted only if the total catch in the fishery is greater than the sum of the CWT recoveries multiplied by the PEFs.

If the CWT recoveries are not adjusted *ModelRatio_f* is set to 99 as a flag.

At this point, a final observed cath to 'model catch' ratio can be computed for each fishery. This value is, along with a saved to the outfile

$$RecoveryAdjustmentFactor_{f} = \frac{\sum_{s,a,t} LandedCatch_{s,a,f,t}}{BPObsCatch_{f}}$$

Now a cohort analysis is performed *for each stock* using the landed catch in each fishery. The cohort analysis procedures are exactly the same as those preformed for an 'OOB' run.

Compute the total number of CWT mortalities by age and time step for both terminal and preterminal fisheries:

$$PTMorts_{s,a,t} = \sum_{PTFisheries} LandedCatch_{s,a,f,t} * (1 + DropOff_{f}) + ShakMorts_{s,a,f,t} + CNRMorts_{s,a,f,t} + CNRMorts_{s,a,f,t}$$
$$TMorts_{s,a,t} = \sum_{TFisheries} LandedCatch_{s,a,f,t} * (1 + DropOff_{f}) + ShakMorts_{s,a,f,t} + CNRMorts_{s,a,f,t}$$

Compute the 'terminal' or mature cohort by age and time step as:

$$MatCohort_{s,a,t} = TMorts_{s,a,t} + Escape_{s,a,t}$$

In the final time period, the immature cohort for the oldest age and after natural mortality is:

$$PTCohort_{s,a=5,t=3} = MatCohort_{s,a=5,t=3} + PTMorts_{s,a=5,t=3}$$

The cohort size for the younger ages in the final time period is computed as:

$$PTCohort_{s,a,t=3} = \frac{PTCohort_{s,a+1,t=1}}{SRate_{a+1,t=1}} + MatCohort_{s,a,t} + PTMorts_{s,a,t}$$

The cohort size for all ages in earlier time periods is computed as:

$$PTCohort_{s,a,t} = \frac{PTCohort_{s,a,t+1}}{SRate_{a,t+1}} + MatCohort_{s,a,t} + PTMorts_{s,a,t}$$

Once an initial estimate of preterminal and terminal cohort sizes for all stocks have been made, incidental (shaker) and CNR mortalities by stock, fishery, age, and time period can be estimated.

For initial iteration, assume the number of encounters of all stocks by fishery and time period is equal to the landed catch. The encounters can be scaled up or down to match available external estimates of encounter rates. The scalars are input in section 8 of the CAL file.

$$Encounters_{f,t} = \sum_{s} \sum_{a=2}^{5} CWTCatch_{s,a,f,t} * EncAdj_{f,t}$$

Compute the proportions of the cohort at age that are above and below the size limit assuming a normal distribution of fish length at age.

$$SubLegProp_{f,a,t} = f(Minsize_{a,f,t}, Length_{a,t}), Length_{a,t} \sim N(Mean_{a,t}, SD_{a,t}^{2})$$

LegalProp_{f,a,t} = 1 - SubLegProp_{f,a,t}

Compute the total sub-legal population as:

$$TotalSLPop_{f,t} = \sum_{s} \sum_{a=2}^{5} SubLegProp_{s,f,a,t} * Cohort_{s,a,t}$$

where

 $Cohort_{s,a,t} = PTCohort_{s,a,t}$ for Preterminal fisheries and

 $Cohort_{s,a,t} = MatCohort_{s,a,t}$ for Terminal fisheries.

Compute the proportion of each age that is sublegal.

$$SLProp_{s,f,a,t} = \frac{SubLegProp_{s,f,a,t} * Cohort_{s,a,t}}{TotalSlPop_{f,t}}$$

Now compute the number of shaker mortalities as:

$$Shakers_{s,a,f,t} = Encounters_{f,t} * SLProp_{s,f,a,t} * ShakMortRate_{f}$$

CNR mortalities are not generally estimated in FRAM calibration since CNR fisheries were rare during the base period. Computation details are not included in this draft of CHCAL.

Now that an initial estimate of shakers is available, cohort sizes are re-estimated based on the new number of total mortalities. This continues iteratively until the change in age 2 cohort size is less than a predefined limit ('convergence tolerance', CAL file line 10). Note that at this stage we have available at the start of each time step a preterminal cohort at age and a terminal, or mature cohort at age.

Once cohort sizes are available, maturation rates by age and time step can be computed. The maturation rate for the oldest age in the final time step is assumed to be 1.0

In the last time step, compute a total cohort after fishing mortality.

$$TotalCohort_{s,a,t=3} = MatCohort_{s,a,t=3} + \frac{PTCohort_{s,a+1,t=1}}{SRate_{s,a+1,t=1}}$$

And the Maturation rate is simply the mature portion of the total cohort after fishing.

$$MatRate_{s,a,t=3} = \frac{MatCohort_{s,a,t=3}}{TotalCohort_{s,a,t=3}}$$

For earlier time steps, maturation rates are computed in a similar way as:

$$TotalCohort_{s,a,t} = MatCohort_{s,a,t} + \frac{PTCohort_{s,a,t+1}}{SRate_{s,a,t+1}}$$

$$MatRate_{s,a,t} = \frac{MatCohort_{s,a,t}}{TotalCohort_{s,a,t}}$$

Once maturation rates are available, adult equivalence (AEQ) can be computed. AEQ is the probability that a fish of a certain age will survive to spawn, in the absence of future fishing. AEQs are a function of the maturation rate of the stock and therefore are stock specific. AEQ is defined as 1.0 for the oldest age class at the final time step.

$$AEQ_{a=5,t=3} = 1.0$$

In earlier time steps, for all ages, AEQ is computed as

$$AEQ_{a,t} = MatRate_{s,a,t} + ((1 - MatRate_{s,a,t}) * SRate_{a+1,t} * AEQ_{s,a,t+1})$$

Finally, exploitation rates on the vulnerable cohort are computed as:

$$ExpRate_{s,a,f,t} = \frac{LandedCatch_{s,a,f,t}}{TotalCohort_{s,a,t} * SRate_{a,t} * LegalProp_{f,a,t}}$$

And shaker encounter rates are computed as:

 $ShakEnc_{s,a,f,t} = \frac{(Sha \ker s_{s,a,f,t} / ShakMortrate_{f})}{TotalCohort_{s,a,t} * SRate_{a,t} * SLProp_{s,a,f,t}}$

3.4.9 CHCAL Output— FRAM base period ".out" file from All Stocks Run

CHCAL writes one final output file, which is used as a basic driver file for the FRAM model. The OUT file is described below.

CHCAL OUT File: Section 1

Section 1 contains global values defining the dimensions of the model.

33	Number of Stocks
73	Number of Fisheries
3	Number of Time Steps
5	Maximum Age
4	Maximum Age for Encounter Rate Adjustment

CHCAL OUT File: Section 2

Section 2 contains Adult Equivalencies by stock, age, and time step.

Beetion 2 contains i haut Equiva	store of stored, age, and this step.
0.95705235	step 4; Stock 1; Age 5
1.00000000	step 3; Stock 1; Age 5
0.97399998	step 2; Stock 1; Age 5
0.95705235	step 1; Stock 1; Age 5
	*
	*
	*
0.27315800	step 1; Stock 33; Age 2

CHCAL OUT File: Section 3

Section 3 contains the growth parameters, by stock.

982.1	Stock 1; LMAX; Maturity 0
2.83	ТО
0.029	L
0.11	CV - Age2
0.12	CV - Age3
0.09	CV - Age4
0.09	CV - Age5
1,085.2	Stock 1; LMAX; Maturity 1
	*
	*
	*
0.11 ,CV	Age5

CHCAL OUT File: Section 4

Section 4 contains data on the 'midpoint', in months from October, of each time step.

1.0	Midpoint month of time step 1
5.5	Midpoint month of time step 2
8.0	Midpoint month of time step 3
1.0	Midpoint month of time step 4

CHCAL OUT File: Section 5

Section 5 contains shaker inclusion flags for each stock/fishery combination in a matrix format. The rows correspond to fisheries, the columns to stocks. This data was input from the CAL file and not modified by CHCAL.

011100001000000010110111111111111
0000000000000000100100000110010
0001000000000001011011110110110
00001001000000001011011110110110
*
*
*
*
10010100111100011100010000000101

CHCAL OUT File: Section 6

Section 6 contains base period starting cohort sizes (first time period) at age, before natural mortality.

744,009	Stock 1; 2
423,945	Stock 1; 3
195,369	Stock 1; 4
12,598	Stock 1; 5
	*
	*
	*
8	Stock 33; 5

CHCAL OUT File: Section 7

Section 7 contains the Recovery Adjustment Factors and the fraction of the observed catch during the base period which can be accounted for by FRAM stocks. This is sometimes called the "proportion modeled stocks". A '99' in the first column (the recovery adjustment factor)indicates no overall adjustment was made to the CWT recovery data to account for total catches. When adjustments were made, the values in the first and second columns will be the inverse of each other. The left column is for the user's information and is deleted prior to use of the OUT file in FRAM.

99	0.4967	Fishery 1;
99	0.2016	Fishery 2;
99	0.2709	Fishery 3;
1.636	0.6112	Fishery 4;
		*
		*
		*
99		Fishery33;

Section 8 co	ontains 'other' mortality rates by fishery, as input in the CAL file.
0.008	Fishery 1 (Alaska Troll TCCHINOOK (97)-1)
0.03	Fishery 2 (Alaska Net)
0.036	Fishery 3 (Alaska Sport TCCHINOOK (97)-1)
0.03	Fishery 4 (N/C BC Net)
	*
	*
	*
0.02	Fishery 73 (Freshwater Net WDFW and Tribes)

CHCAL OUT File: Section 8 Section 8 contains 'other' mortality rates by fishery, as input in the CAL file

CHCAL OUT File: Section 9

Section 9 contains natural mortality rates during the first time period.

0.2577	Age 2
0.1878	Age 3
0.1221	Age 4
0.0596	Age 5

CHCAL OUT File: Section 10

Section 10 contains shaker mortality rates by fishery in the first time period.

0.2550	Fishery 1;
0.3000	Fishery 2;
0.1230	Fishery 3;
0.3000	Fishery 4;
	*
	*
	*
0.3000	Fishery 33;

CHCAL OUT File: Section 11

Section 11 contains the encounter rate adjustment factors for ages 2 to 4 in the first time period. A value for each age is written, even though the adjustments are currently not age specific.

1.0000 1.0000 1.0000	Fishery 1;
1.0000 1.0000 1.0000	Fishery 2;
1.0000 1.0000 1.0000	Fishery 3;
1.0000 1.0000 1.0000	Fishery 4;
	*
	*
	*
1.0000 1.0000 1.0000	Fishery 73;

CHCAL OUT File: Section 12

Beetion 12 contains the terminal hishery mags (o	- protorniniai, 1 - torniniai) in the first time period
0	Fishery 1;
0	Fishery 2;
0	Fishery 3;
0	Fishery 4;
	*
	*
	*
1	Fishery 73;

Section 12 contains the terminal fishery flags (0 = preterminal, 1 = terminal) in the first time period.

CHCAL OUT File: Section 13

Section 13 contains maturation rates by age for stocks that mature in the first time period.

Stock 49	Age 3	0.0797452400
Stock 50	Age 3	0.0797452400
Stock 49	Age 4	0.5020105200
Stock 50	Age 4	0.5020105200
	*	
	*	
	*	
Stock 52	Age 5	0.9585540900

CHCAL OUT File: Section 14

Section 14 contains exploitation rates and shaker encounter rates by stock, age, and fishery for the first time period.

Stock	Age	Fishery	ER	Shak Enc
1	2	1	0.0000000000	0.0000034900
2	2	1	0.0000000000	0.0000034900
1	3	1	0.0000000000	0.0000034900
2	3	1	0.0000000000	0.0000034900
		*		
		*		
1	3	8	0.0011095100	0.0001878300
		*		
		*		
		*		
66	4	67	0.1635743400	0.0540591100

For the remainder of the OUT file, sections 9 through 14 are repeated for each time period. Time period 4 is included as the last section. It is simply a repeat of the data in time step 1.

4. APPENDIX

4.1 List of CWT groups

TABLE 1. CHINOOK CWT GROUPS USED IN 2007 FRAM CALIBRATION

FRAM FI	R Name	RUN NAME	Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL		Stock	Hatchery
	M FlFi	FALL CHIN	50324	77	1	780623	780623	96486	1969	101545			BIG SOOS CR	09.0072	SKOOKUM CR HATCHERY
	M FlFi	FALL CHIN	50325	77	1	780620	780620	99240	2025	58266		159531		09.0072	SKOOKUM CR HATCHERY
	M FlFi	FALL CHIN	50726	79	1	800617	800617	59629	1219	2425200	127.4	2E+06		DAY CR)	SKOOKUM CR HATCHERY
	M FlFi	FALL CHIN	50727	79	1	800702	800702	40468	1686	7846	74	50000		DAY CR)	LUMMI SEA PONDS
	M FlFi	FALL CHIN	632042	79	1	800523	800523	100514	1221	0		101735		DAY CR)	SAMISH HATCHERY
	M FlFi	FALL CHIN	632101	79	1	800523	800523	106037	206	22287		128530		DAY CR)	SAMISH HATCHERY
	M FlFi	FALL CHIN	632102	79	1	800523	800523	103023	1231	9300		113554		DAY CR)	SAMISH HATCHERY
	NK Spr	SPRG CHIN	632846	84	1	850531	850531		15653	0				01.0406	KENDALL CR HATCHERY
	NK Spr	SPRG CHIN	633452	84	2	860410	860410	52274	26	48617		100917		01.0406	KENDALL CR HATCHERY
	NK Spr	SPRG CHIN	633453	84	2	860410	860410	52599	26	48293		100918		01.0406	KENDALL CR HATCHERY
	NK Spr	SPRG CHIN	634422	88	2	900402	900402	146729	8212	221851		376792		01.0406	KENDALL CR HATCHERY
	g FlFi	SUMR CHIN	631606	76	1	770603	770603	147153	3928	6040		157121		03.0176	MARBLEMOUNT HATCHERY
	g FlFi	SUMR CHIN	631624	76	1	7704	7704	5875	0	0	250.6	5875	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631625	76	1	7705	7705	5428	0	0	250.6	5428	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631626	76	1	7705	7705	5438	0	0	250.6	5438	SKAGIT R	03.0176	WILDSTOCK
	g FlFi	SUMR CHIN	631627	76	1	770601	770601	5090	0	0	250.6	5090	SKAGIT R	03.0176	WILDSTOCK
	g FlFi	SUMR CHIN	631628	76	1	7706	7706	2502	0	0	250.6	2502	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631629	76	1	770420	770617	2126	0	0	250.6	2126	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631630	77	1	7804	7804	2281	0	0	224.6	2281	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631631	77	1	780419	780501	3543	0	0	224.6	3543	SKAGIT R	03.0176	WILDSTOCK
4 Ska	g FlFi	SUMR CHIN	631632	77	1	780402	780402	9584	0	0	224.6	9584	SKAGIT R	03.0176	WILDSTOCK
4 Skac	g FlFi	SUMR CHIN	631633	77	1	7805	7805	10528	0	0	224.6	10528	SKAGIT R	03.0176	WILDSTOCK
4 Skac	g FlFi	SUMR CHIN	631635	77	1	7805	7805	7947	0	0	224.6	7947	SKAGIT R	03.0176	WILDSTOCK
4 Skac	g FlFi	SUMR CHIN	631636	77	1	7806	7806	2332	0	0	199.8	2332	SKAGIT R	03.0176	WILDSTOCK
5 Skaç	g FlYr	SUMR CHIN	631610	76	2	780502	780502	73428	1575	72063	10	147066	SKAGIT R	03.0176	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	633114	90	2	920416	920416	146265	1687	136571	14	284523	CLARK CR	03.1421	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	634744	87	2	890418	890418	63808	159	0	9.5	63967	SUIATTLE R	03.0710	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	634902	87	2	890418	890418	25725	65	0	9.5	25790	CLARK CR	03.1421	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	635026	87	2	890418	890418	25379	64	0	9.5	25443	CLARK CR	03.1421	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	633314	86	2	880408	880408	80395	405	0		80800	SKAGIT TRIB	UTARIES	MARBLEMOUNT HATCHERY
6 Skaç	g SpYr	SPRG CHIN	633323	85	2	870429	870429	47521	191	0		47712	SKAGIT TRIB	UTARIES	MARBLEMOUNT HATCHERY
8 Snoł	h FlYr	SUMR CHIN	631701	76	2	780326	780326	98972	1507	802521	8	903000	SNOHOMISH R	07.0012	WALLACE R HATCHERY
9 Stil	l FlFi	SUMR CHIN	211826	89	1	900516	900516	44964	1873	0	86.1	46837	STILLAGUAMIS	H R -NF	STILLAGUAMISH HATCH
9 Stil	l FlFi	CHINOOK	212026	90	1	910517	910520	63019	5862	219	68.9	69100	STILLAGUAMIS	H R -NF	STILLAGUAMISH HATCH
9 Stil	l FlFi	SUMR CHIN	212221	86	1	870414	870414	23904	996	0	90.2	24900	STILLAGU	AMISH R	STILLAGUAMISH HATCH
	l FlFi	SUMR CHIN	212555	87	1	880518	880518	127910	9333	7923	90.2		STILLAGU		STILLAGUAMISH HATCH
	l FlFi	SUMR CHIN	213147	88	1	890517	890517	36599	4524	0	80	41123	STILLAGUAMIS	H R -NF	STILLAGUAMISH HATCH
10 Fula	a FlFi	FALL CHIN	212204	86	1	870519	870519	191825	14660	851175	89.1	1E+06	SNOHOMISH R	07.0012	TULALIP SALMON HATCH
10 Fula	a FlFi	FALL CHIN	212544	87	1	880509	880509	188110	14377	1222513	90.2	1E+06	GREEN R +TULA	LIP BAY	TULALIP SALMON HATCH
10 Fula	a FlFi	FALL CHIN	213141	88	1	890519	890519	181873	22479	420648	84.9	625000	MAY CR + WAL	LACE CR	TULALIP SALMON HATCH

11 4168 21 F 17AL CHIN 6.1814 70 1 79051 79051 75051 7505 7752 40 142407 102 14240 SKADT + SEXANDIST +	FRAM FR Name RUN N	AME Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL	Stock	Hatchery
11 1118 F FALL CHTN 631395 78 1 790517 790517 10758 112 270396 B13 0500 CR 95.002 5005 CREEK HATCHERY 11 1418 F F FALL CHTN 631394 78 1 790517 106052 3497 251915 122 38-06 GERN R. + TSAQUAH TSSAQUAG HATCHERY 11 1419 F F FALL CHTN 631944 78 1 800502 800502 11913 482 2737105 105 B8-06 BES 000 CR 09.072 5005 CREEK HATCHERY 11 14195 F F FALL CHTN 631944 78 1 800502 800502 11913 482 2737105 165 B8-06 BES 0050 CR 09.072 5005 CREEK HATCHERY 12 W-A FIF1 FALL CHTN 111601 77 1 705058 26358 1267 13 36 2674 PORTADE BAY STOCK UN PORTADE	11 MiPS Fl F iFALL C	HIN 631814	78	1	790531	790531	61307	370	1061514	102	1E+06	SKAGIT + SKYKOMISH	VOIGHTS CR HATCHERY
11 44189 F1 F IFALC CHN 631940 78 1 790517 790517 790517 790515 1054 177958 146.2 380.00 CREE HATCHERY 11 44189 F1 F IFALC CHN 631940 78 1 800509 800509 120515 1497 255955 146.2 255955 146.2 380.00 CRE 8.0.707 ISSAQUAH CR 08.017 ISSAQUAH CR 08.017 11 44189 F1 F IFALC CHN 631940 78 1 800509 800509 120515 1497 255955 146.2 380.00 CR 08.0072 SOGO CREER HATCHERY 11 44189 F1 F IFALC CHN 631940 70 1 800518 60230 6230 120515 1497 255955 146.2 380.00 CR 08.0072 SOGO CREER HATCHERY 11 44189 F1 F IFALC CHN 631940 70 1 800518 60231 6230 304 11610 70 48-00 113 81060 CR 08.0072 SOGO CREER HATCHERY 12 AFA F1F FALC CHN 111607 77 1 705518 79518 23053 1265 115 313 266 153 31 266 153 31 266 DOTAME BAY STOCK UN FORTAGE BAY STOCK UN	11 MiPS Fl F iFALL C	HIN 631842	78	1	790531	790531	7752	408	134270	102	142430	SKAGIT + SKYKOMISH	VOIGHTS CR HATCHERY
11 416P F1 F 1FALL CHIN 631943 79 1 90053 799525 10054 258 258 258 9156 122 38-06 CREEN R. + IESAQUAH HATCHERY 11 416P F1 F 1FALL CHIN 631943 79 1 90057 90050 119913 482 273105 120 45-06 SIG 8005 R. 9.072 8008 CR 9.072 8008 CR 9.072 8008 CR 9.072 8008 CREEK HATCHERY 11 418P F1 F 1FALL CHIN 631945 79 1 90057 90531 80152 4238 31750 420367 100 48-06 SIG 8005 R. 9.072 8008 CREEK HATCHERY 11 418P F1 F 1FALL CHIN 631945 79 1 90057 80052 4238 301 117653 101 410 SIG 8005 R. 9.072 8008 CREEK HATCHERY 11 418P F1 F 1FALL CHIN 631945 79 1 90057 80052 4238 301 107631 831 266 SIG 8005 R. 9.072 8008 CREEK HATCHERY 12 78-A F1F1 FALL CHIN 111603 78 1 790518 790518 23653 858 0 44 2516 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111605 78 1 790518 790518 23165 858 0 45 2576 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111608 78 1 790518 790518 3353 1033 0 5 2 5463 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111608 79 1 800528 800529 2057 887 104 37 2154 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111628 79 1 800519 800519 2057 887 104 37 2154 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111628 79 1 800519 800529 2052 20005 805 0 37 2063 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY 12 78-A F1F1 FALL CHIN 111628 79 1 800519 800529 2052 20052 100 FORMAG BAY STOCK UW PORTAGE BAY HATCHERY <	11 MiPS Fl F iFALL C	HIN 631935	78	1	790517	790517	99372	1207	173396	99	273975	BIG SOOS CR 09.0072	SOOS CREEK HATCHERY
11 14 100 F1 F 1FALC CHN 631944 79 1 000509 100515 4479 2691950 126 38400 153800AH CR 08.0178 TESAQUAH CR 08.0178 T	11 MiPS Fl F iFALL C	HIN 631936	78	1	790517	790517	100664	404	177958	112	279026	BIG SOOS CR 09.0072	SOOS CREEK HATCHERY
114/PS P1 F 12ALC KLN 631944 79 1 800502 10921 422 273703 106 3E-06 BXG 5005 K 09.072 SOOS CREEKE HATCHERY 114/PS P1 F 12ALC KLN 631945 79 11 800523 800523 64238 304 117665 139 12-06 VOIGHT CR 10.0414 VOIGHTS CR HATCHERY 12/PA-R1P1 FALL CHN 111601 77 1 700508 700508 26331 266 139 12-06 VOIGHT CR 10.0414 VOIGHTS CR HATCHERY 12/PA-R1P1 FALL CHN 111602 77 1 700508 700508 26331 266 139 2676 DORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 111604 78 1 790518 790518 24639 1107 0 47 2576 FORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 111604 78 1 790518 790518 24639 1107 0 47 2576 FORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 11160 78 1 790518 790518 24639 1107 0 47 2576 FORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 11160 78 1 790518 790518 2357 1093 0 52 54630 PORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 11162 79 1 800518 700518 5357 1093 0 52 54630 PORTAGE BAY STOCK UN PORTAGE BAY HATCHERY 12/PA-R1P1 FALL CHN 11162 79 1 800518 700518 50573 870 184 37 2065 PORTAGE BAY STOCK UN PORTAGE BAY STOCK	11 MiPS Fl F iFALL C	HIN 631940	78	1	790523	790525	150554	2554	2558955	146.2	3E+06	GREEN R + ISSAQUAH	ISSAQUAH HATCHERY
11 H128 F1 F 1FALL CHIN 63120 78 1 790517 79051 18513 1750 42030 100 48-06 BIG SOOS CR 09.072 SOOS CREEK HATCHERY 12.W-A F1F1 FALL CHIN 111601 77 1 780508 780508 26188 2357 1176 31 28714 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111603 78 1 790518 780518 24639 110 0 47 25746 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 78 1 790518 790518 24639 110 0 47 25746 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 78 1 790518 790518 24639 110 0 47 25746 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 78 1 790518 790518 24639 110 56 50 27511 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 78 1 790518 790518 2016 639 0 55 27511 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 78 1 790518 790518 2016 639 0 55 27511 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12.W-A F1F1 FALL CHIN 111605 79 1 790528 790529 700529 70052	11 MiPS Fl F iFALL C	HIN 631943	79	1	800509	800509	120515	3497	2691961	125	3E+06	ISSAQUAH CR 08.0178	ISSAQUAH HATCHERY
11 2.7M-A P1P1 FALL CHIN 612020 79 1 00523 60232 60232 6188 304 117605 137 12704 PDETAGE BAY STOCK UN PORTAGE BAY ANTCHERY 12.7M-A P1P1 FALL CHIN 111602 77 1 780588 78058 26331 266 13 36 2610 PORTAGE BAY ANTCHERY 12.7M-A P1P1 FALL CHIN 111602 78 1 790518 790518 23633 858 0 44 24511 FORTAGE BAY HATCHERY 12.7M-A P1P1 FALL CHIN 111604 78 1 790518 790518 23673 689 0 56 23761 FORTAGE BAY HATCHERY 12.7M-A P1P1 FALL CHIN 111604 78 1 790518 790518 23078 689 0 56 23670 FORTAGE BAY HATCHERY 12.7M-A P1P1 FALL CHIN 111624 78 1 790518 23078 689 0 53 20652 FORTAGE BAY HATCHERY 12.7M-A P1P1 FALL CHIN 111624 78 1 790529 790518 23078 60 37 20654 FORTAGE BAY HATCHER	11 MiPS Fl F iFALL C	HIN 631944	79	1	800502	800502	119913	482	2737105	106	3E+06	BIG SOOS CR 09.0072	SOOS CREEK HATCHERY
12 M-A PIF: FALC CHIN 111601 77 1 780508 26188 2357 16 31 28744 PORTAGE BAY ENTCHENY PORTAGE BAY ENTCHENY 12 M-A PIF: FALC CHIN 111603 78 1 790518 74	11 MiPS Fl F iFALL C	HIN 631945	78	1	790517	790531	185133	1750	4203607	100	4E+06	BIG SOOS CR 09.0072	SOOS CREEK HATCHERY
12 M-A F12; FALL CHIN 111602 77 1 706508 706518 26631 2664 10 0 47 25746 PORTAGE BAY STOCK UN PORTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 111604 78 1 790518 23653 858 0 44 24511 PORTAGE BAY STOCK UN PORTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 111606 78 1 790518 23073 683 0 56 23767 FORTAGE BAY STOCK UN PORTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 111616 78 1 790518 790518 23073 683 0 56 23677 FORTAGE BAY ANCHERY PORTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 111624 78 1 790529 3637 15 0 5433 FORTAGE BAY ANCHERY PARTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 111624 79 1 600519 20518 867 0 38 21132 FORTAGE BAY ANCHERY PARTAGE BAY ANCHERY 12 M-A F12; FALL CHIN 1116107 <td< td=""><td>11 MiPS Fl F iFALL C</td><td>HIN 632020</td><td>79</td><td>1</td><td>800523</td><td>800523</td><td>64238</td><td>304</td><td>1176650</td><td>139</td><td>1E+06</td><td>VOIGHT CR 10.0414</td><td>VOIGHTS CR HATCHERY</td></td<>	11 MiPS Fl F iFALL C	HIN 632020	79	1	800523	800523	64238	304	1176650	139	1E+06	VOIGHT CR 10.0414	VOIGHTS CR HATCHERY
12 WA P17 FALL CHIN 11603 78 1 790518 790518 2463 858 0 47 25746 PORTAGE BAY STOCK UW PORTAG	12 JW-A FlFi FALL C	HIN 111601	77	1	780508	780508	26188	2357	169	31	28714	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 M-A F1F; FALL CHIN 111604 78 1 790518 790518 2165 3858 8 50 27317 FORTAGE BAY STOCK UN FORTAGE BAY HATCHERY 12 M-A F1F; FALL CHIN 111606 78 1 790518 290518 25357 109 56 23767 FORTAGE BAY STOCK UN FOR	12 JW-A FlFi FALL C	HIN 111602	77	1	780508	780508	26331	266	13	36	26610	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 W-A F1F1 FALL CHN 111605 78 1 790518 790518 2516 689 0 50 2751 PORTAGE BAY STOCK UM PORTAGE BAY MATCHERY 12 W-A F1F1 FALL CHN 111618 78 1 790518 55157 1093 0 52 5463 PORTAGE BAY STOCK UM PORTAGE BAY MATCHERY 12 W-A F1F1 FALL CHN 111527 79 1 800528 14848 2077 0 19 2055 PORTAGE BAY STOCK UM PORTAGE BAY MATCHERY 12 W-A F1F1 FALL CHN 111529 79 1 800528 800528 14848 2077 0 19 2055 PORTAGE BAY STOCK UM PORT	12 JW-A FlFi FALL C	HIN 111603	78	1	790518	790518	24639	1107	0	47	25746	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 NA PIFI FALL CHIN 111606 78 1 790518 720518 720518 720518 720518 720518 720529 3637 103 0 52 5632 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12 NA-A FIFI FALL CHIN 111624 78 1 790529 3637 15 0 54 3652 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12 NA-A FIFI FALL CHIN 111624 79 1 800519 20573 807 184 37 21645 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12 NA-A FIFI FALL CHIN 111630 79 1 800519 20455 697 0 38 21132 PORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 12 NA-A FIFI FALL CHIN 111631 79 1 800519 20145 653 776661 16 1815 DORTAGE BAY STOCK UM PORTAGE BAY HATCHERY 13 PB6 FIFI FALL CHIN 111631 79 1 800519 80232 2016 6352 776661 16 16150 DORTAGE BAY HATCHERY<	12 JW-A FlFi FALL C	HIN 111604	78	1	790518	790518	23653	858	0	44	24511	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 NA- PIFI PALL CRIN 111618 78 1 790518 75537 103 0 52 54630 PORTAGE BAY STOCK UW PORTAGE BAY STOCK UW PORTAGE BAY INCREENY 12 NA- PIFI PALL CRIN 111627 79 1 800528 808528 18488 2077 0 19 20565 PORTAGE BAY STOCK UW PORTAGE BAY STOCK UW PORTAGE BAY INCREENY 12 NA- PIFI PALL CRIN 111620 79 1 800512 20008 855 0 37 2063 PORTAGE BAY STOCK UW PORTAGE BAY INCREENY 12 NA- PIFI PALL CRIN 111630 79 1 800518 20196 560 0 19 20756 FORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 12 NA- PIFI PALL CRIN 111631 79 1 800515 3444 5637 77661 116 61510 BIG SOOS CR 9.0072 CRITAGE BAY HATCHERY 13 SP60 PIFI PALL CRIN 531207 78 78052 78652 116 <t< td=""><td>12 JW-A FlFi FALL C</td><td>HIN 111605</td><td>78</td><td>1</td><td>790518</td><td>790518</td><td>27165</td><td>358</td><td>8</td><td>50</td><td>27531</td><td>PORTAGE BAY STOCK UW</td><td>PORTAGE BAY HATCHERY</td></t<>	12 JW-A FlFi FALL C	HIN 111605	78	1	790518	790518	27165	358	8	50	27531	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12.W-A.F.IFI PALL CRIN 11.1624 78 1 790529 790529 73637 15 0 54 3652 PORTAGE BAY STOCK UW PO	12 JW-A FlFi FALL C	HIN 111606	78	1	790518	790518	23078	689	0	56	23767	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12.W-A FIFI FALL CHIN 111627 79 1 800519 20551 2073 887 104 37 21644 FORTAGE BAY STOCK UW FO	12 JW-A FlFi FALL C	HIN 111618	78	1	790518	790518	53537	1093	0	52	54630	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12.W-A F1Pi FALL CHIN 111628 79 1 800522 2008 855 0 37 21644 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 12.W-A F1Pi FALL CHIN 111630 79 1 800522 2008 855 0 37 2063 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 12.W-A F1Pi FALL CHIN 111613 79 1 800528 2015 560 0 19 2075 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 13.SPS0 F1Pi FALL CHIN 511632 79 1 800516 1434 456 334052 83 49342 PUTALED RY RALAGE HATCHERY 13.SPS0 F1Pi FALL CHIN 631907 78 1 700523 28188 0 571678 116 599866 DESCUTES X MINTER MINTER HATCHERY 13.SPS0 F1Pi FALL CHIN 631063 79 1 800631 800513 12643 0 6424157 120 64424157 120 6424157 120 5016 S000C C 9.0072 COLTECE RATCH	12 JW-A FlFi FALL C	HIN 111624	78	1	790529	790529	3637	15	0	54	3652	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 NH-A P1F1 FALL CHIN 111629 79 1 800519 2008 855 0 37 2083 PORTAGE BAY STOCK UW PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 12 NH-A P1F1 FALL CHIN 111631 79 1 800519 2015 560 0 19 2075 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 13 SPSo F1F1 FALL CHIN 111631 79 1 800519 20124 220 0 52 22042 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 13 SPSo F1F1 FALL CHIN 631903 79 1 800519 20422 80516 14634 465 334052 83 34942 PURLUP + DESCUUTES GARRISON HATCHERY 13 SPSo F1F1 FALL CHIN 632053 79 1 800531 20423 0 642157 120 68+06 SPUGET SOUND STOCK MINTER MATCHERY 13 SPSo F1F1 FALL CHIN 632053 79 1 800531 20423 0 645157 10 6506 59067 00072 COULTER CR HATCHERY 14 SpSo	12 JW-A FlFi FALL C	HIN 111627	79	1	800528	800528	18488	2077	0	19	20565	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 JW-A P1Pi FALL CHIN 111630 79 1 800519 20435 677 0 38 21132 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 12 JW-A P1Pi FALL CHIN 111632 79 1 800519 21822 220 0 52 20756 PORTAGE BAY STOCK UW PORTAGE BAY HATCHERY 13 SPS0 F1Pi FALL CHIN 50722 79 1 800519 31494 565 77668 116 B1501 BIG SOOS CR 09.0077 KALAMA CR HATCHERY 13 SPS0 F1Pi FALL CHIN 631007 78 1 790523 790523 28188 0 571678 116 599866 DESCHUTES R X MINTER MINTER HATCHERY 13 SPS0 F1Pi FALL CHIN 631037 78 1 60051 800610 1624157 120 6E466 UNDETEMINED MIXED CAPITOL LAKE REARING 14 SpS0 F1Pi FALL CHIN 631035 78 2 800216 36051 1612822 161500S CR 09.0072 CONTER CE HATCHERY 14 SpS0 F1Pi FALL CHIN 631053 78 2 800124 800216	12 JW-A FlFi FALL C	HIN 111628	79	1	800519	800519	20573	887	184	37	21644	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 JW-A F1F1 FALL CHIN 111621 79 1 800528 20196 560 0 19 20756 PORTAGE BAY STOCK UW PORTAGE BAY STOCK UW 13 SPS0 F1F1 FALL CHIN 50722 79 1 800515 33494 5635 776681 116 815810 BIG SOOS CR 0.0072 GARRISON HATCHERY 13 SPS0 F1F1 FALL CHIN 63103 79 1 800429 800516 14834 456 334052 83 349342 PUTALUP + DESCHUTES R X MINTER MINTER HATCHERY 13 SPS0 F1F1 FALL CHIN 63203 79 1 800631 800630 34619 6 6242157 60 580215 BIG SOOS CR 0.0072 COULTER CR HATCHERY 13 SPS0 F1F1 FALL CHIN 632104 79 1 80061 80061 72032 361 1612822 116.4 28-06 S PUCET SOUND STOCKS MINTER HATCHERY 14 SpS0 F1Yr FALL CHIN 632104 79 2 800218 80228 20400 303350 8 328750 <td< td=""><td>12 JW-A FlFi FALL C</td><td>HIN 111629</td><td>79</td><td>1</td><td>800522</td><td>800522</td><td>20008</td><td>855</td><td>0</td><td>37</td><td>20863</td><td>PORTAGE BAY STOCK UW</td><td>PORTAGE BAY HATCHERY</td></td<>	12 JW-A FlFi FALL C	HIN 111629	79	1	800522	800522	20008	855	0	37	20863	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
12 JW-A P1F1 FALL CHIN 11622 79 1 800519 21822 220 0 52 22042 PORTAGE BAY STOCK UW PORTAGE BAY STOCK UW 13 3PS0 P1F1 FALL CHIN 631907 79 1 800515 33494 563 776681 116 615810 BIG SOOS CR 09.0072 KALAMA CR HATCHERY 13 3PS0 P1F1 FALL CHIN 631907 78 1 790523 780523 28188 0 571678 116 59966 DESCHUTES R X MINTER MINTER HATCHERY 13 3PS0 P1F1 FALL CHIN 632103 79 1 800518 800531 12841 0 6424157 120 68-06 SPUETS SUBSOCK C W MINTER HATCHERY 13 3PS0 P1F1 FALL CHIN 63163 78 2 800216 30651 70316 5.7 7018 NINTER HATCHERY MINTER CR 15.048 FOX ISLAMD HATCHERY 14 3pS0 P1Yr FALL CHIN 63163 78 2 800216 30621 30316 5.237 7018 8 30605 CR 9.0072 SOOS CREE KHATCHERY 14 3pS0 P1Yr	12 JW-A FlFi FALL C	HIN 111630	79	1	800519	800519	20435	697	0	38	21132	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
13 BESO FIFI FALL CHIN 50722 79 1 800515 800515 34494 5635 776681 116 815810 BIG SOOS CR 09.0072 KALAWA CR HATCHERY 13 BESO FIFI FALL CHIN 631907 78 1 800429 800516 14834 456 334052 83 349342 PUYALUP + DESCHUTES GARRISON HATCHERY 13 BESO FIFI FALL CHIN 631007 79 1 800630 306619 69 622527 60 658215 BIG SOOS CR 09.0072 COULTER CR HATCHERY 13 BESO FIFI FALL CHIN 632104 79 1 800631 30617 733 1 6424157 120 658215 BIG SOOS CR 09.0072 COULTER CR HATCHERY 14 5pSO FIYF FALL CHIN 631905 78 2 800228 20400 0 308350 8 32875 BIG SOOS CR 09.0072 SOOS CREEK HATCHERY 14 5pSO FIYF FALL CHIN 632015 78 2 800121 40196 231 96154 9.8 18+06 HOD CANAL + GREER CAPTOL LAKE REARING 14 5pSO FIYF	12 JW-A FlFi FALL C	HIN 111631	79	1	800528	800528	20196	560	0	19	20756	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
13 3 PSo F1F1 FALL CHIN 631903 79 1 800429 800516 14834 456 334052 83 349342 PUYALLUP + DESCHUTES GARRISON HATCHERY 13 3 PSo F1F1 FALL CHIN 631907 78 1 790523 20188 0 571678 116 599866 DESCHUTES R X MINTER MINTER HATCHERY 13 3 PSo F1F1 FALL CHIN 632103 79 1 800531 12081 6424157 120 641-64 UNDETERMINED MIXED CAPITOL LAKE REARING 13 3 PSo F1F1 FALL CHIN 631853 78 2 800216 3665 37 70316 5.7 74018 MINTER REATING FOX ISLAND HATCHERY 14 3 PSo F1Yr FALL CHIN 631853 78 2 800216 3665 37 70316 5.7 74018 MINTER REATING FOX ISLAND HATCHERY 14 3 PSo F1Yr FALL CHIN 631905 78 2 800216 36052 28 280406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3 PSo F1Yr FALL CHIN 632027 79	12 JW-A FlFi FALL C	HIN 111632	79	1	800519	800519	21822	220	0	52	22042	PORTAGE BAY STOCK UW	PORTAGE BAY HATCHERY
13 SPS0 F1Fi FALL CHIN 631907 78 1 790523 790523 790523 790523 79167 60 5527 60 658215 BIG SOOS CR 09.0072 COULTER R X MINTER COULTER R ATCHERY 13 SPS0 F1Fi FALL CHIN 632103 79 1 800531 12843 0 642457 120 68+06 UNDETRMINED MIRED COULTER R ATCHERY 14 SpS0 F1Fi FALL CHIN 63153 78 2 80061 7022 361 1612822 116.4 28+06 S PUGET SOUND STOCKS MINTER HATCHERY 14 SpS0 F1Yr FALL CHIN 631907 78 2 800228 20400 0 308350 8 328750 BIG SOOS CR 09.0072 SOOS CREEK HATCHERY 14 SpS0 F1Yr FALL CHIN 632017 79 2 810366 810360 1689 278 24466 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 SpS0 F1Yr FALL CHIN 632017 79 2 810366 810360 1288 6.2 4180 S PUGET SOUND STOCKS CAPITOL LAKE REAR	13 3PSo FlFi FALL C	HIN 50722	79	1	800515	800515	33494	5635	776681	116	815810	BIG SOOS CR 09.0072	KALAMA CR HATCHERY
13 SPS0 F1Fi FALL CHIN 632063 79 1 800630 34619 69 623527 60 658215 BIG SOOS CR 09.0072 COLTER CR HATCHERY 13 SPS0 F1Fi FALL CHIN 632104 79 1 800531 800531 2243 0 6424157 120 6E+06 S PUGET SOUND STOCKS MINTER HATCHERY 14 Sp50 F1ri FALL CHIN 631853 78 2 800216 80528 20400 0 30850 8 32875 BIG SOOS CR 09.0072 COLTER CR HATCHERY 14 Sp50 F1ri FALL CHIN 631905 78 2 800310 80312 48196 231 961504 9.8 1E+06 HOOD CANAL + GREN R CAPITOL LAKE REARING 14 Sp50 F1ri FALL CHIN 632019 79 2 81036 800310 30429 703 801336 8 8126'S S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 Sp50 F1ri FALL CHIN 632027 79 2 810361 80326 5 91526 7 70121 AKE REARING 14 Sp50 F1ri FALL CHIN 632027	13 3PSo FlFi FALL C	HIN 631903	79	1	800429	800516	14834	456	334052	83	349342	PUYALLUP + DESCHUTES	GARRISON HATCHERY
13 SPS0 F1Fi FALL CHIN 632103 79 1 800531 12843 0 6424157 120 6E+06 UNDETERMINED MIXED CAPITOL LAKE REARING 13 SPS0 F1Fi FALL CHIN 632104 79 1 800601 70232 361 1612822 116.4 2E+06 S PUGET SOUND STOCKS MINTER HATCHERY 14 SpS0 F1Vr FALL CHIN 631005 78 2 800216 800216 3665 37 70316 5.7 7418 MINTER CR 15.0044 POX SOUS CR EEK HATCHERY 14 SpS0 F1Vr FALL CHIN 632015 78 2 800131 800310 16080 278 294406 8 31064 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 SpS0 F1Vr FALL CHIN 632027 79 2 810306 10306 103929 703 80136 8 83268 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 SpS0 F1Vr FALL CHIN 632027 79 2 810301 13495 0 28385 6.2 41880 BIG SOOS CR 9.0072 ALLSISON SPRINSHAT. <tr< td=""><td>13 3PSo FlFi FALL C</td><td>HIN 631907</td><td>78</td><td>1</td><td>790523</td><td>790523</td><td>28188</td><td>0</td><td>571678</td><td>116</td><td>599866</td><td>DESCHUTES R X MINTER</td><td>MINTER HATCHERY</td></tr<>	13 3PSo FlFi FALL C	HIN 631907	78	1	790523	790523	28188	0	571678	116	599866	DESCHUTES R X MINTER	MINTER HATCHERY
13 3PS0 F1F1 FALL CHIN 632104 79 1 800601 72032 361 1612822 116.4 2E406 S PUGET SOUND STOCKS MINTER HATCHERY 14 3pS0 F1Yr FALL CHIN 631905 78 2 800216 800216 3665 37 70316 5.7 74018 MINTER CR 15.0048 FOX ISLAMD HATCHERY 14 3pS0 F1Yr FALL CHIN 631005 78 2 800218 20022 20400 0 308350 8 328750 BIG SOOS CR 0.0.018 FOX ISLAMD HATCHERY 14 3pS0 F1Yr FALL CHIN 632015 79 2 810306 16080 228 294406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pS0 F1Yr FALL CHIN 632017 79 2 810306 100302 703 810336 832968 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pS0 F1Yr FALL CHIN 632027 79 2 810310 14050 124150 7 201281 DEGET SOUND STOCKS CAPITOL LAKE REARING 14 3pS0 F1Yr FALL CHIN	13 SPSo FlFi FALL C	HIN 632063	79	1	800630	800630	34619	69	623527	60	658215	BIG SOOS CR 09.0072	COULTER CR HATCHERY
14 3pSo FlYr FALL CHIN 631853 78 2 800216 3665 37 70316 5.7 74018 MINTER CR 15.0048 FOX ISLAND HATCHERY 14 3pSo FlYr FALL CHIN 631905 78 2 800228 80022 20400 0 308350 8 328750 BIG SOOS CR 09.0072 SOOS CREEK HATCHERY 14 3pSo FlYr FALL CHIN 632015 79 2 810306 16080 278 294406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pSo FlYr FALL CHIN 632017 78 2 800310 13495 0 28385 6.2 41880 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pSo FlYr FALL CHIN 632027 79 2 800310 80310 1638 163 18987 5.4 20203 VOIGHT CR 10.0414 GARRISON HATCHERY 14 3pSo FlYr FALL CHIN 632027 79 2 810301 81031 1663 7 713337 DESCHUTES R MINTER CR 10.0414 GARRISON HATCHERY <tr< td=""><td></td><td></td><td>79</td><td></td><td></td><td></td><td></td><td></td><td></td><td>120</td><td></td><td></td><td>CAPITOL LAKE REARING</td></tr<>			79							120			CAPITOL LAKE REARING
14 3pSo FlYr FALL CHIN 631905 78 2 800228 20400 0 308350 8 328750 BIG SOOS CR 0.9.0072 SOOS CREEK HATCHERY 14 spSo FlYr FALL CHIN 632004 78 2 800131 800322 48196 231 961504 9.8 1E+06 HOD CANAL + GREEN R CAPITOL LAKE REARING 14 spSo FlYr FALL CHIN 632019 79 2 810306 16080 278 294406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 spSo FlYr FALL CHIN 632013 78 2 800310 80010 13495 0 28385 6.2 41880 BIG SOOS CR 0.9.0072 ALLSON SPRINGS HAT. 14 spSo FlYr FALL CHIN 632023 78 2 800310 80031 1666 59 19152 7 20121 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 spSo FlYr FALL CHIN 632056 79 2 810301 8661 21 164635 7 17337 DESCHUTES R X MINTER COULTER CR HATCHERY	13 SPSo FlFi FALL C	HIN 632104	79							116.4	2E+06	S PUGET SOUND STOCKS	MINTER HATCHERY
14 3pso Flyr FALL CHIN 632004 78 2 800131 800312 48196 231 961504 9.8 1E+06 HOOD CANAL + GREEN R CAPITOL LAKE REARING 14 3pso Flyr FALL CHIN 632015 79 2 810306 610306 16080 278 294406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pso Flyr FALL CHIN 632023 78 2 800310 13495 0 28385 6.2 41880 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 3pso Flyr FALL CHIN 632027 79 2 800310 13495 0 28385 6.2 41800 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 3pso Flyr FALL CHIN 632027 79 2 810301 8681 21 164635 7 17337 DESCHUTES R X MINTER COULTER CR HATCHERY 14 3pso Flyr FALL CHIN 632228 79 2 81024 10433 31 218532 9 228996 BIG SOOS CR 09.0072 ALLISON SPRINGS REARING					800216	800216	3665	37		5.7		MINTER CR 15.0048	FOX ISLAND HATCHERY
14 3pso FlYr FALL CHIN 632015 79 2 810306 810306 16080 278 294406 8 310764 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pso FlYr FALL CHIN 632019 79 2 810306 810306 30929 703 801336 8 832968 S PUGET SOUND STOCKS CAPITOL LAKE REARING 14 3pso FlYr FALL CHIN 632027 79 2 800310 13495 0 28385 6.2 41880 BIG SOOS CR 09.0072 ALLISON BATCHERY 14 3pso FlYr FALL CHIN 632055 79 2 810301 9696 59 191526 7 201281 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 3pso FlYr FALL CHIN 632057 79 2 810301 80631 21 164635 7 70337 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 3pso FlYr FALL CHIN 632220 79 <td>1</td> <td></td> <td>SOOS CREEK HATCHERY</td>	1												SOOS CREEK HATCHERY
143pSo Flyr FALL CHIN 632019 79 2 810306 810306 30929 703 801336 8 832968 S FUGET SOUND STOCKS CAPITOL LAKE REARING 143pSo Flyr FALL CHIN 632023 78 2 800310 13495 0 28385 6.2 41880 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 143pSo Flyr FALL CHIN 632027 79 2 800919 810214 10243 163 189887 5.4 200293 VOIGHT CR 10.0414 GARRISON HATCHERY 143pSo Flyr FALL CHIN 632026 79 2 810301 8681 21 164635 7 17337 DESCHUTES R 13.012 COULTER CR HATCHERY 143pSo Flyr FALL CHIN 632221 79 2 810304 810214 10433 31 218532 9 228996 BIG SOOS CR 09.0072 CRISP CR HATCHERY 143pSo Flyr FALL CHIN 632221	1									9.8			CAPITOL LAKE REARING
14 \$\begin{aligned}{2}{2}{3}\$ 78 2 800310 13495 0 28385 6.2 41880 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 \$\begin{aligned}{2}{2}{3}{3}\$ FALL CHIN 632027 79 2 800910 810214 10243 163 189887 5.4 200293 VOIGHT CR 10.0414 GARRISON HATCHERY 14 \$\begin{aligned}{2}{2}{3}{5}{7} 79 2 810301 810301 9696 59 191526 7 201281 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 \$\begin{aligned}{2}{2}{3}{7}{7} 2 810301 810301 8681 21 16635 7 17337 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 \$\begin{aligned}{2}{3}{7}{7} 2 810301 81051 4659 14 0 4.5 4673 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 \$\begin{aligned}{2}{3}{7}{7} 2 810217 810217 3060 0 59815 8.2 62875 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 \$\begin{aligned}{2}{5}{7	1												
14 \$\begin{aligned}{2}{2} \$\begin{aligned}{3}{2} \$ali	1									-			
14 \$\frac{1}{9}\$\frac{1}{9}\$ FALL CHIN 632055 79 2 810301 810301 9696 59 191526 7 201281 DESCHUTES R 13.0028 COULTER CR HATCHERY 14 \$\frac{1}{9}\$\trac{1}{9}\$ FALL CHIN 632056 79 2 810301 8681 21 164635 7 173337 DESCHUTES R X MINTER COULTER CR HATCHERY 14 \$\frac{1}{9}\$\trac{1}{9}\$ FALL CHIN 632128 79 2 810204 10433 31 218532 9 228996 BIG \$\frac{1}{9}\$ 005 CR 0.9.0072 CRI\$P CR HATCHERY 14 \$\frac{1}{9}\$\trac{1}{9}\$ FALL CHIN 632220 79 2 810217 3060 0 59815 8.2 62875 BIG \$\frac{1}{9}\$ 0.0072 ALLISON \$\frac{1}{10169}\$ 51 0 8.2 10202 BIG \$\frac{1}{9}\$ 0.0072 ALLISON \$\frac{1}{10169}\$ 51 0 8.2 100.02 BIG \$\frac{1}{9}\$ 0.0072 ALLISON \$\frac{1}{10169}\$ 51 0 8.2 10202 BIG \$\frac{1}{9}\$ 0.0072 ALLISON \$\frac{1}{10169}\$ 51 0 8.2 10202 BIG \$\frac{1}{9}\$ 0.0072 ALLISON \$\frac{1}{10169}\$ 51 0 8.2 10202 BIG \$\frac{1}{9}\$ 0.0031 WHITE RIV	1												
14 SpSo FALL CHIN 632056 79 2 810301 8081 21 164635 7 173337 DESCHUTES R X MINTER COULTER CR HATCHERY 11 SpSo FlYr FALL CHIN 632128 79 2 810204 810204 10433 31 218532 9 228996 BIG SOOS CR 09.0072 CRISP CR HATCHERY 14 SpSo FlYr FALL CHIN 632220 79 2 810303 810531 4659 14 0 4.5 4673 DESCHUTES R 13.0028 HUPP SPRINGS REARING 14 SpSo FlYr FALL CHIN 632221 79 2 810217 810217 060 0 59815 8.2 62875 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 SpSo FlYr FALL CHIN 632228 79 2 810217 10169 51 0 8.2 10200 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 15 whte SprF SPRG CHIN 212209 91 1 920527 920530 38231	-												
11 SpSo FlYr FALL CHIN 632128 79 2 810204 810204 10433 31 218532 9 228996 BIG SOOS CR 09.0072 CRISP CR HATCHERY 14 SpSo FlYr FALL CHIN 632220 79 2 810303 810531 4659 14 0 4.5 4673 DESCHUTES R 13.0028 HUPP SPRINGS REARING 14 SpSo FlYr FALL CHIN 632221 79 2 810217 810217 3060 0 59815 8.2 62875 BIG SOOS CR 09.0072 ALLISON SPRINGS REARING 14 spSo FlYr FALL CHIN 632228 79 2 810217 810217 10169 51 0 8.2 10200 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 15 whte SprF SPRG CHIN 21209 91 1 920527 92050 38231 1305 0 89.1 3913 46120 WHITE R 10.0031 WHITE RIVER HATCHERY 15 whte SprF SPRG CHIN 212245 91 1 920527 920501 141164 4817 29 89.1<	1												
14 \$\frac{5}{950}\$ FlYr FALL CHIN 632220 79 2 810303 810531 4659 14 0 4.5 4673 DESCHUTES R 13.0028 HUPP \$PRINGS REARING 14 \$p\$o FlYr FALL CHIN 632221 79 2 810217 810217 3060 0 59815 8.2 62875 BIG \$005 CR 09.0072 ALLISON \$PRINGS REARING 14 \$p\$o FlYr FALL CHIN 632228 79 2 810217 10169 51 0 8.2 10220 BIG \$005 CR 09.0072 ALLISON \$PRINGS REARING 15 %hte \$prF \$PRG CHIN 211659 91 1 920527 920530 38231 1305 0 89.1 39536 WHITE R 10.0031 WHITE RIVER HATCHERY 15 %hte \$prF \$PRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 %hte \$prF \$PRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 <td>1</td> <td></td>	1												
14 SpSo FALL CHIN 632221 79 2 810217 810217 3060 0 59815 8.2 62875 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 14 SpSo FlYr FALL CHIN 632228 79 2 810217 810217 10169 51 0 8.2 10200 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 15 Whte SprF SPRG CHIN 211659 91 1 920527 920530 38231 1305 0 89.1 39536 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212209 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212246 91 1 920527 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE	1												
14 ŠpŠo FlYr FALL CHIN 632228 79 2 810217 10169 51 0 8.2 1020 BIG SOOS CR 09.0072 ALLISON SPRINGS HAT. 15 Whte SprF SPRG CHIN 211659 91 1 920527 920530 38231 1305 0 89.1 39536 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212209 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212245 91 1 920527 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER	1												
15 Whte SprF SPRG CHIN 211659 91 1 920527 920530 38231 1305 0 89.1 39536 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212209 91 1 920528 920604 221091 9835 6432 100.1 237358 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212245 91 1 920527 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212321 92 1 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte Sp	-												
15 Whte SprF SPRG CHIN 212209 91 1 920528 920604 221091 9835 6432 100.1 237358 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212246 91 1 920527 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212321 92 1 930610 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212462 93 1 940601 940421 218349 20888 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15													
15 Whte SprF SPRG CHIN 212245 91 1 920527 920530 141164 4817 29 89.1 146010 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212246 91 1 920527 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212462 93 1 940601 940421 218349 2088 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY	1												
15 Whte SprF SPRG CHIN 212246 91 1 920527 138995 11759 134918 77.9 285672 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212321 92 1 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212462 93 1 940601 940421 218349 20888 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY	-												
15 Whte SprF SPRG CHIN 212321 92 1 930610 167830 4127 45850 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212462 93 1 940601 940421 218349 20888 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY													
15 Whte SprF SPRG CHIN 212322 92 1 930610 214640 34362 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212462 93 1 940601 940421 218349 20888 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte SprF SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY	-									77.9	285672		
15 Whte Sprf SPRG CHIN 212462 93 1 940601 940421 218349 20888 3643 120.9 WHITE R 10.0031 WHITE RIVER HATCHERY 15 Whte Sprf SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY	1								45850				
15 Whte SprF SPRG CHIN 212503 93 1 940512 940523 159348 3144 2978 WHITE R 10.0032 WHITE RIVER HATCHERY	-												
	1									120.9			
15 Whte SprF SPRG CHIN 212463 93 1 940321 940325 75866 10248 28785 WHITE R 10.0033 WHITE RIVER HATCHERY	-												
	15 Whte SprF SPRG C	HIN 212463	93	1	940321	940325	75866	10248	28785			WHITE R 10.0033	WHITE RIVER HATCHERY

FRAM FR Name	RUN NAME	Code	BVD	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL		Stock	Hatchery
16 HdCl FlFi	FALL CHIN	631752	78	1	790530	790530	37439	360	147624	120	185423	GEORGE ADA		GEORGE ADAMS HATCHRY
16 HdCl FlFi	FALL CHIN	631915	78	1	790518	790518	34300	487	752200	100	786987	FINCH CR	16.0222	HOODSPORT HATCHERY
16 HdCl FlFi	FALL CHIN	632041	79	1	800430	800430	73387	1193	1512620	150	1587200		UND STOCKS	GEORGE ADAMS HATCHRY
16 HdCl FlFi	FALL CHIN	632109	79	1	800425	800425	48954	847	669899	150	719700	FINCH CR	16.0222	HOODSPORT HATCHERY
17 HdCl FlYr	FALL CHIN	631637	78	2	800223	800223	6792	60	137207	12	144059	FINCH CR	16.0222	HOODSPORT HATCHERY
17 HdCl FlYr	FALL CHIN	631840	78	2	800311	800311	1098	6	19065	15	20169	FINCH CR	16.0222	MCKERNAN HATCHERY
17 HdCl FlYr	FALL CHIN	631852	78	2	800311	800311	15935	77	276688	15	292700	FINCH CR	16.0222	MCKERNAN HATCHERY
17HdCl FlYr	FALL CHIN	632057	79	2	810206	810207	6245	25	130828	11	137098	FINCH CR	16.0222	HOODSPORT HATCHERY
18 SJDF FlFi	FALL CHIN	631919	78	2	790815	800428	42386	780	815057	14.7	858223	ELWHA R	18.0272	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	632107	79	2	800815	810404	39629	170	762425	11	802224	ELWHA R	18.0272	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633038	83	1	840615	840615	25316	2026	801553		802224	ELWHA R	18.0273	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633039	83	1	840615	840615	24964	230	611062		802224	ELWHA R	18.0274	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633419	84	1	850621	850621	26510	227	602571		802224	ELWHA R	18.0275	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633420	84	1	850621	850621	26317	173	645988		802224	ELWHA R	18.0276	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633543	85	1	860610	860610	25992	172	640840		802224	ELWHA R	18.0277	ELWHA HATCHERY
18 SJDF FlFi	FALL CHIN	633544	85	1	860610	860610	26097	68	475337		802224	ELWHA R	18.0278	ELWHA HATCHERY
19)reg Tule	FALL CHIN	71842	78	1	790501	790529	287916	68	475338				TANNER CR	BONNEVILLE HATCHERY
19)reg Tule	FALL CHIN	72157	79	1	800520	800528	121071	4433	4947400				TANNER CR	BONNEVILLE HATCHERY
19)reg Tule	FALL CHIN	72163	79	1		800529	51851	901	1170077				TANNER CR	OXBOW
20 Wash Tule	FALL CHIN	631802	77	1	780619	780619	146001	7523	503262	133	656786	COWLITZ R	26.0002	COWLITZ SALMON HATCH
20 Wash Tule	FALL CHIN	631942	78	1	790627	791016	143568	2326	4157781	54.5	4303675	COWLITZ R	26.0002	COWLITZ SALMON HATCH
20 Mash Tule	FALL CHIN	632154	79	1	800603	800711	244267	9915	5671774	128.4	5925956	COWLITZ R	26.0002	COWLITZ SALMON HATCH
21 Low CR Wi	FALL CHIN	631611	77	1	780714	780714	48567	293	0	140	48860	LEWIS R	27.0168	LEWIS RIVER HATCHERY
21 Low CR Wi	FALL CHIN	631618	77	1	7805	7806	19806	439	0	199.8	20245	LEWIS R	27.0168	WILDSTOCK
21 Low CR Wi	FALL CHIN	631619	77	1	780613	780706	15887	407	0	150.2	16294	LEWIS R	27.0168	WILDSTOCK
21 Low CR Wi	FALL CHIN	631813	78	1	790713	790713	60912	368	0	141	61280	LEWIS R	27.0168	LEWIS RIVER HATCHERY
21 Low CR Wi	FALL CHIN	631858	78	1	7906	7906	26242	0	0	199.8	26242	LEWIS R	27.0168	WILDSTOCK
21 Low CR Wi	FALL CHIN	631859	78	1	790605	790605	23402	165	0	199.8	23567	GRAYS R	25.0093	WILDSTOCK
21 Low CR Wi	FALL CHIN	631902	78	1	7906	7906	21187	0	0	199.8	21187	LEWIS R	27.0168	WILDSTOCK
21 Low CR Wi	FALL CHIN	631920	78	1	790905	790905	51660	420	0	28	52080	LEWIS R	27.0168	SPEELYAI HATCHERY
21 Low CR Wi	FALL CHIN	632002	78	1	7907	7907	18238	55	0	199.8	18293	LEWIS R	27.0168	WILDSTOCK
22 BPH Tule	FALL CHIN	50433	78	1	790518	790518	140948	12590	3569570		3723108	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50434	78	1	790420	790420		11035	0	86.9	106616	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50444	78	1	790420	790420	135537		4357431		4512330	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50446	78	1	790320	790321	245981		9860784	125	1E+07	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50639	79	1	800310	800310	130208	4863	7205064		7340135	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50640	79	1	800408	800421	77720	2735	3833522		3913977	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50641	79	1	800509	800509	61771	1325	3127581		3190677	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	50642	79	1	800807	800807	23563	456 0	1088462		1112481	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	54101	76	1	770418	770418	87707	-	1376816		1464523	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	54201	76	1	770418	770418	91438	0	1343481		1434919	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule	FALL CHIN	54401	76	1	770408	770408	96767	0	0	85.9	96767	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN FALL CHIN	54501 54601	76 76	1 1	770408 770524	770408 770524	95813 141161	0	941640 3915686		1037453 4056847	SPRING CR SPRING CR	29.0159 29.0159	SPRING CR NFH SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN	54601	76	1	780512	780512		0 11362	2983318		4056847 3138958	SPRING CR	29.0159	SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN	55601	77	1	780512	780312	144278	7549	2983318 9785283		3138958 9942557	SPRING CR	29.0159	SPRING CR NFH SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN	55601	77	1	780321	780321	149725	7549 5296	3758701		3919174	SPRING CR	29.0159	SPRING CR NFH SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN	56001	77	1	780518	780518	98122	3643	3758701	55.9	101765	SPRING CR	29.0159	SPRING CR NFH SPRING CR NFH
22 BPH Tule 22 BPH Tule	FALL CHIN	56201	77	1	780418	780418	90122	7593	2031781		2131688	SPRING CR	29.0159	SPRING CR NFH
22 Drii iule	TITIL CUITIN	20201	, ,	-	,00410	,00410	72314	222	2031/01	07.9	2131000	STRING CK	27.0133	STRING CK NFR

FRAM FR Name	RUN NAME	Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL	Stock	Hatchery
23 Jpp CR Su	SUMR CHIN	631607	76	1	770528	770528	149308	2582	117582	32	269472	WELLS DAM (47)	WELLS DAM SP CHANNEL
23 Jpp CR Su 23 Jpp CR Su	SUMR CHIN	631642	76	1	770614	770614	145946	6082	102628	160	254656	WELLS DAM (47)	WELLS DAM SP CHANNEL
23 Jpp CR Su 23 Jpp CR Su	SUMR CHIN	631762	77	1	780613	780613	153604	1787	187921	43	343312	WELLS DAM (47)	WELLS DAM SP CHANNEL
24 Jpp CR Br	FALL CHIN	130713	75	1	760617	760617	102710	1,0,	794778	46	897488	PRIEST RAPIDS (36)	RINGOLD SPRINGS HATC
24 Jpp CR Br	FALL CHIN	131101	75	1	760701	760701	132004	0	759480	-10 95	891484	PRIEST RAPIDS (36)	PRIEST RAPIDS HATCH.
24 Jpp CR Br 24 Jpp CR Br	FALL CHIN	131101	75	1	760701	760701	152412	0	296839	37	449251	PRIEST RAPIDS (36)	PRIEST RAPIDS HATCH.
24 Jpp CR Br	FALL CHIN	631662	76	1	770627	770627	147338	3287	611808	96	762433	PRIEST RAPIDS (36)	PRIEST RAPIDS HATCH.
24 Jpp CR Br 24 Jpp CR Br	FALL CHIN	631741	77	1	780627	780627	152532	1308	385483	90	539323	PRIEST RAPIDS (36)	PRIEST RAPIDS HATCH.
24 Jpp CR Br 24 Jpp CR Br	FALL CHIN	631741	77	1	780623	780623	146296	4836	346274	35	497406	PRIEST RAPIDS (36)	RINGOLD SPRINGS HATC
25 Cowl Spr	SPRG CHIN	631817	77	2	790423	790423	24079	243	45667	5.3	69989	COWLITZ R 26.0002	COWLITZ SALMON HATCH
25 Cowl Spr 25 Cowl Spr	SPRG CHIN	631818	77	2	790423	790423	24079	245	40804	6.8	65391	COWLITZ R 26.0002	COWLITZ SALMON HATCH
26 Will Spr	SPRG CHIN	71737	77	1	790423	790423	22989	1390	303489	0.0	327868	WILLAMETTE R	DEXTER PONDS
26 Will Spr 26 Will Spr	SPRG CHIN	71738	77	1	781106	781107	23974	1051	132996		158021	WILLAMETTE R	WILLAMETTE HATCHERY
26 Will Spr 26 Will Spr	SPRG CHIN	71741	77	2	790319	790320	30927	1023	397745		429695	WILLAMETTE R	DEXTER PONDS
26 Will Spr 26 Will Spr	SPRG CHIN	71742	77	2	790319	790320	29463	1920	229835		261218	WILLAMETTE R	DEXTER PONDS
26 Will Spr 26 Will Spr	SPRG CHIN	71925	78	1	791105	791108	14919	790	262923		278632	WILLAMETTE R	WILLAMETTE HATCHERY
26 Will Spr 26 Will Spr	SPRG CHIN	72042	78	2	/91105	800310	30726	1016	594105		625847	WILLAMETTE R	WILLAMETTE HATCHERY
26 Will Spr 26 Will Spr	SPRG CHIN	72042	78	1		791105	31309	574	0		31883	WILLAMETTE R	WILLAMETTE HATCHERY
26 Will Spr 26 Will Spr	SPRG CHIN	72049	78	1		791109	31558	2106	306		33970	MCKENZIE R	MCKENZIE
26 Will Spr 26 Will Spr	SPRG CHIN	72049	78	2		800315	34897	1959	71304		108160	MCKENZIE R	MCKENZIE
26 Will Spr 26 Will Spr	SPRG CHIN	91621	76	2	780309	780310	25007	5097	1752		31856	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91622	76	2	780309	780310	29533	2217	382		32132	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91623	76	2	780309	780310	26912	3506	1169		31587	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91624	76	2	780309	780310	24609	6066	754		31429	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91625	76	2	780309	780310	13412	1233	578		15223	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91626	76	2	780309	780310	14917	1355	452		16724	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr 26 Will Spr	SPRG CHIN	91627	76	1	771107	771108	28734	4928	800		34462	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr	SPRG CHIN	91628	76	1	771107	771108	27558	2694	672		30924	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr	SPRG CHIN	91629	76	1	771107	771108	28703	2370	745		31818	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr	SPRG CHIN	91630	76	1	771107	771108	25946	4253	158		30357	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr	SPRG CHIN	91631	76	1	771107	771108	29047	2976	155		32178	S SANTIAM R	SOUTH SANTIAM HATCH
26 Will Spr	SPRG CHIN	91701	76	2	780313	780315	49142	1273	509		50924	N SANTIAM R	MARION FORKS
26 Will Spr	SPRG CHIN	91703	76	2	780313	780315	50076	770	514		51360	N SANTIAM R	MARION FORKS
27 Snake Fl	FALL CHIN	633226	84	1	850606	850606	78417	236	101400	67	180053	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633227	84	1	850606	850606	78064	235	100900	67	179199	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633228	84	1	850606	850606	78504	236	101400	67	180140	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633633	85	1	860613	860613	49112	366	0	46	49478	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633638	85	1	860610	860610	49325	468	0	58	49793	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633639	85	1	860610	860610	49325	468	0	58	49793	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633640	85	1	860610	860610	49325	468	0	58	49793	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633641	85	1	860610	860610	49325	468	0	58	49793	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	633642	85	1	860610	860610	49325	468	0	58	49793	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	634259	86	1	870601	870601	126076	2836	0	48	128912	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
27 Snake Fl	FALL CHIN	634261	86	1	870601	870601	125570	2824	0	48	128394	SNAKE R-LOWR 33.0002	LYONS FERRY HATCHERY
28)re No Fl	FALL CHIN	71643	77	1		781025	19800	4877	0		24677	SALMON R	SALMON RIVER
28)re No Fl	FALL CHIN	71644	77	1		780814	23974	921	0		24895	SALMON R	SALMON RIVER
28)re No Fl	FALL CHIN	71849	78	1		791026	20102	1058	5290		26450	SALMON R	SALMON RIVER
28)re No Fl	FALL CHIN	71850	78	1		790815	21558	1303	3430		26291	SALMON R	SALMON RIVER
28)re No Fl	FALL CHIN	91637	76	1		771005	21820	980	0		22800	SALMON R	SALMON RIVER
28)re No Fl	FALL CHIN	91638	76	1		770823	26281	446	652		27379	SALMON R	SALMON RIVER

FRAM FR Name	RUN NAM	re Codo	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL	Stock	Hatchery
29 WCVI Totl	FALL CHI			AGE 1	760604	760607	50731	1354	435060	FFF	487145	STOCK S-ROBERTSON CR/STAMP	H-ROBERTSON CREEK
29 WCVI TOLI 29 WCVI Toll	FALL CHI			1	760604 760611	760607	47724	2102	413159		462985	S-ROBERTSON CR/STAMP	H-ROBERTSON CREEK
29 WCVI TOLI 29 WCVI Toll	FALL CHI			1	100011	750611	4//24 46194	695	956988		402905	S-STAMP RIVER	H-ROBERTSON CREEK
	FALL CHI			1		750611	27383	673	425710		453766	S-STAMP RIVER	H-ROBERTSON CREEK
29 WCVI Totl	FALL CHI				770506	770610		2385			453766 3188072		
29 WCVI Totl	FALL CHI			1 1	770526 770608	770610	64550 69203	2385 933	3121137 372351		3188072 442487	S-ROBERTSON CR/STAMP	H-ROBERTSON CREEK
29 WCVI Totl												S-ROBERTSON CR/STAMP	H-ROBERTSON CREEK
29 WCVI Totl	FALL CHI			1	780529	780630	70816	4257	4103278		4178351	S-ROBERTSON CREEK	H-ROBERTSON CREEK
29 WCVI Totl	FALL CHI FALL CHI			1	780603	780617	66725	5400 475	3481062		3553187	S-ROBERTSON CREEK	H-ROBERTSON CREEK
30 Frasr Lt				1	840531	840601	26088		323310		349873	S-HARRISON RIVER	H-CHILLIWACK RIVER
30 Frasr Lt	FALL CHI			1	840531	840601	24015	415	297349		321779	S-HARRISON RIVER	H-CHILLIWACK RIVER
30 Frasr Lt	FALL CHI			1	840531	840601	26829	219	329214		356262	S-HARRISON RIVER	H-CHILLIWACK RIVER
30 Frasr Lt	FALL CHI			1	850616	850617	14266	1069	148713		164048	S-CHILLIWACK R	H-CHILLIWACK R
30 Frasr Lt	FALL CHI			1	850606	850607	14892	228	147001		162121	S-CHILLIWACK R	H-CHILLIWACK R
30 Frasr Lt	FALL CHI			1	850616	850617	14100	1069	146982		162151	S-CHILLIWACK R	H-CHILLIWACK R
30 Frasr Lt	FALL CHI			1	850616	850617	14233	1069	148368		163670	S-CHILLIWACK R	H-CHILLIWACK R
30 Frasr Lt	FALL CHI			1	850606	850607	15100	228	149055		164383	S-CHILLIWACK R	H-CHILLIWACK R
30 Frasr Lt	FALL CHI			1	850606	850607	14883	227	146912		162022	S-CHILLIWACK R	H-CHILLIWACK R
31Frasr Erl	-			1	800604	800609	45440	1200	0		46640	S-SHUSWAP R LOWER	
31Frasr Erl	*			1	790705	790716	45932	2316	0		48248	S-CHILKO RIVER	
31Frasr Erl	YSUMR CHI	IN 21625	78	1	790613	790624	122797	1125	0		123922	S-SHUSWAP R LOWER	
31Frasr Erl	YSUMR CHI	IN 21638	78	1	790621	790624	18705	118	0		18823	S-SHUSWAP R LOWER	
31Frasr Erl	ySUMR CHI	IN 21658	78	1	790705	790716	149523	2492	0		152015	S-CHILKO RIVER	
31Frasr Erl	YSUMR CHI	IN 21755	79	1		800610	12402	283	0		12685	S-SHUSWAP R LOWER	
31Frasr Erl	ySUMR CHI	IN 24247	86	1	870507	870508	25256	255	153506		179017	S-CLEARWATER R UP/TO	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24248	86	1	870527	870528	24910	470	153540		178920	S-CLEARWATER R UP/TO	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24249	86	1	870623	870624	25507	159	146313		171979	S-CLEARWATER R UP/TO	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24250	86	1	870722	870724	25687	355	147808		173850	S-CLEARWATER R UP/TO	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24316	86	1	870521	870523	51771	347	499882		552000	S-SHUSWAP R LOW	H-SHUSWAP R
31Frasr Erl	ySUMR CHI	IN 24521	86	1	870502	870503	25292	255	117360		142907	S-CLEARWATER R LW/BC	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24522	86	1	870519	870520	24877	466	114593		139936	S-CLEARWATER R LW/BC	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24523	86	1	870620	870621	26091	0	115935		142026	S-CLEARWATER R LW/BC	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24524	86	1	870721	870722	25302	288	117250		142840	S-CLEARWATER R LW/BC	H-CLEARWATER R UP/TO
31Frasr Erl	ySUMR CHI	IN 24525	86	1	870414	870416	24846	486	96808		122140	S-FINN CREEK	H-CLEARWATER R UP/TO
31Frasr Erl	VSUMR CHI	IN 24526	86	1	870513	870514	25338	122	101470		126930	S-FINN CREEK	H-CLEARWATER R UP/TO
31Frasr Erl	VSUMR CHI	IN 24527	86	1	870421	870424	25558	330	216492		242380	S-FINN CREEK	H-CLEARWATER R UP/TO
31Frasr Erl			86	1	870415	870421	25942	262	1912		28116	S-DEADMAN R	H-SPIUS CR
31Frasr Erl			86	1	870415	870421	26455	267	1949		28671	S-DEADMAN R	H-SPIUS CR
31Frasr Erl	-			1	870415	870421	26197	265	1931		28393	S-DEADMAN R	H-SPIUS CR
31Frasr Erl	*			1		870402	25988	262	0		26250	S-BONAPARTE R	H-SPIUS CR
31Frasr Erl				1		870402	26730	270	0		27000	S-BONAPARTE R	H-SPIUS CR
31Frasr Erl	-			1		870402	25443	257	0		25700	S-BONAPARTE R	H-SPIUS CR
31Frasr Erl	-			1		870409	26009	0	271591		297600	S-SHUSWAP R. MIDDLE	H-SHUSWAP R
31Frasr Erl	-			1	870520	870522	26505	272	286523		313300	S-SHUSWAP R. MIDDLE	H-SHUSWAP R
31Frasr Erl	-			1	870505	870506	25743	164	86017		111924	S-THOMPSON R N	H-CLEARWATER R UP/TO
31Frasr Erl	-			1	870505	870506	25182	253	84142		109577	S-THOMPSON R N	H-CLEARWATER R UP/TO
31Frasr Erl	-			1	870505	870506	25434	0	84985		110419	S-THOMPSON R N	H-CLEARWATER R UP/TO
31Frasr Erl	*			1	870908	870915	30322	618	10684		41624	S-NICOLA R	H-SPIUS CR
31Frasr Erl	-			1	870908	870915	20913	426	7368		28707	S-NICOLA R	H-SPIUS CR
31Frasr Erl	-			1	870908	870915	25400	520	8949		34869	S-NICOLA R	H-SPIUS CR
31Frasr Erl	-			1	870403	870506	50787	513	75220		126520	S-COLDWATER RIVER	H-SPIUS CR
31Frasr Erl	-			1	870403 870427	870429	49392	500	512008		561900	S-SHUSWAP R LOW	H-SHUSWAP R
31Frasr Erl 31Frasr Erl				1	870427 870918	870429 870923	49392 25565	1261	8793		3561900	S-BONAPARTE R	H-SHUSWAP R H-SPIUS CR
31Frasr Erl 31Frasr Erl	-			1	870918 870918	870923	25565	795	8839		35619	S-BONAPARTE R S-BONAPARTE R	H-SPIUS CR H-SPIUS CR
	-				870918 850415	870923 850507	102737	795	62171				
31Frasr Erl	YOUNK CHI	IN 21717	84	Ţ	030415	00000/	102/3/	U	0∠⊥/⊥		164908	S-STUART R	H-FORT ST JAMES

FRAM FR Name	RUN NAME	Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL		Stock	Hatchery
32Lwr Geo S	FALL CHIN	21612	78	1		790604	72216	3205	559143		634564	S-BIG QUALI	CUM RIVER	H-BIG QUALICUM RIVER
32Lwr Geo S	FALL CHIN	21613	78	1		790604	73545	1654	696416		771615	S-BIG QUALI	CUM RIVER	H-BIG QUALICUM RIVER
32Lwr Geo S	FALL CHIN	21639	77	1		780604	56225	4213	113236		173674	S-CAPIL	ANO RIVER	H-CAPILANO RIVER
32Lwr Geo S	FALL CHIN	21642	77	1		780620	72735	3205	401869		477809	S-CAPIL	ANO RIVER	H-CAPILANO RIVER
32Lwr Geo S	FALL CHIN	21656	78	1		790604	74952	834	1072125		1147911	S-BIG QUALI	CUM RIVER	H-BIG QUALICUM RIVER
32Lwr Geo S	FALL CHIN	21726	77	1		780602	77775	1663	1595825		1675263	S-BIG QUALI	CUM RIVER	H-BIG QUALICUM RIVER
32Lwr Geo S	FALL CHIN	21727	77	1		780602	79317	399	1051346		1131062	S-BIG QUALI	CUM RIVER	H-BIG QUALICUM RIVER
32Lwr Geo S	FALL CHIN	21728	78	1		790607	82938	559	107266		190763	S-BIG QUALI	CUM RIVER	H-CAPILANO RIVER
32Lwr Geo S	FALL CHIN	21729	78	1		790511	84394	535	56360		141289	S-CAPIL	ANO RIVER	H-CAPILANO RIVER
32Lwr Geo S	FALL CHIN	21730	78	1		790511	82723	524	55244		138491	S-CAPIL	ANO RIVER	H-CAPILANO RIVER
33 Whte SprY	SPRG CHIN	212263	91	2	930412	930412	55203	558		9.06	55761	WHITE R	10.0031	WHITE RIVER HATCHERY
33 Whte SprY	SPRG CHIN	212048	92	2	940413	940419	71834	1392		13.09	73226	WHITE R	10.0031	WHITE RIVER HATCHERY
33 Whte SprY	SPRG CHIN	212509	93	2	940601	950421	48971	2765	830		52566	WHITE R	10.0031	WHITE RIVER HATCHERY
34 LwrColNat	FALL CHIN	631802	77	1	780619	780619		1E+05	7523	503262	656786	COWLITZ R	26.0002	COWLITZ HATCH
34 LwrColNat	FALL CHIN	631942	78	1	790627	791016	I	1E+05	2326	4E+06	4303675	COWLITZ R	26.0002	COWLITZ HATCH
34 LwrColNat	FALL CHIN	632154	79	1	800603	800711	I	2E+05	9915	6E+06	5925956	COWLITZ R	26.0002	COWLITZ HATCH
34 LwrColNat	FALL CHIN	71704	77	1		2E+07		1E+05	7314		112521	BIG CR	HATCHERY	BIG CR HATCH
34 LwrColNat	FALL CHIN	71705	77	1		2E+07	E	1E+05	8630		115054		HATCHERY	BIG CR HATCH
34 LwrColNat	FALL CHIN	71844	78	1		2E+07		2E+05	0		5247226		HATCHERY	BIG CR HATCH
34 LwrColNat	FALL CHIN	72160	79	1		2E+07		1E+05	2480		6433459		(BNVILLE)	BIG CR HATCH
34 LwrColNat	FALL CHIN	631746	77	1	2E+07	2E+07		2E+05	4591	947340	1102448	KALAMA R	27.0002	KALAMA FALLS H
34 LwrColNat	FALL CHIN	631747	77	1	2E+07	2E+07	В	1E+05	4368		145267	KALAMA R	27.0002	KALAMA FALLS H
34 LwrColNat	FALL CHIN	631957	78	1	2E+07	2E+07	I	2E+05	3262		5394318	KALAMA R	27.0002	KALAMA FALLS H
34 LwrColNat	FALL CHIN	632105	79	1	2E+07	2E+07		1E+05	1528	2E+06	2400944	KALAMA R	27.0002	KALAMA FALLS H
34 LwrColNat	FALL CHIN	631803	77	1	2E+07	2E+07	P	2E+05	1135		152534	WASHOUGAL R	28.0159	WASHOUGAL H
34 LwrColNat	FALL CHIN	631938	78	1	2E+07	2E+07	I	97417	213		2064980	WASHOUGAL		WASHOUGAL H
34 LwrColNat	FALL CHIN	631946	78	1	2E+07	2E+07	I	2E+05	8113		3277167	WASHOUGAL		WASHOUGAL H
34 LwrColNat	FALL CHIN	632153	79	1	2E+07	2E+07	I	3E+05	7501	6E+06	6122198	COWLITZ MIX	ED STOCKS	WASHOUGAL H

FRAM	FR Name	RUN NAME	Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL		Stock	Hatchery
35	CtrVal	FALL CHIN 5		98	1	2E+07	2E+07		24239		419349	453976	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		98	1	2E+07	2E+07	I	22091		431873	468387	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	28376	11035	406745	446156	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	28507	11086	406563	446156	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	31306	5524	456079	492909	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	31228	5511	456170	492909	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	34037	3366	458054	495457	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	34171	3380	457906	495457	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	29997	6878	889143	926018	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	32136	4802	407109	444047	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	32721	4890	406437	444048	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	33101	4729	436353	474183	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	32280	4611	437292	474183	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	30240	6194	436562	472996	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	32241	6604	434152	472997	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	34328	2784	440537	477649	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	37763	968	199935	238666	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	5.01E+08	98	1	2E+07	2E+07	I	37875	971	199820	238666	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	5.01E+08	98	1	2E+07	2E+07	I	34689	1826	439920	476435	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	5.01E+08	98	1	2E+07	2E+07	I	36099	926	440643	477668	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	5.01E+08	98	1	2E+07	2E+07	I	35099	1273	443891	480263	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	5.01E+08	98	1	2E+07	2E+07	I	36166	182	443915	480263	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	36245	1315	405394	442954	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	35530	1099	446746	483375	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	.01E+08	98	1	2E+07	2E+07	I	36332	932	415327	452591	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5		98	1	2E+07	2E+07	I	36487		286156	322826	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5	6.01E+08	99	1	2E+07	2E+07	I	33820	2159	437688	473667	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	P	35184		459150	496186	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5	6.01E+08	99	1	2E+07	2E+07	I	32817		413636	449898	COLEMAN	NFH	COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	32504		501038	537154	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34176		413388	449553	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34264		427465	463723	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	34628		413732	449803	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		33380		414470	450752	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		33366		410954	447026	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34789		413697	449748	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		33500		425331	461352	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34381		415607	451798	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	32814		423787	460046	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34306		349609	385531	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	35099		413185	449370	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	34002		412345	448517	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		35047		180847	217166	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07	I	32609		451004	487237	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		33860		436172	472386	COLEMAN		COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07	2E+07		34076		417974	454225	COLEMAN		COLEMAN NFH
35 35	CtrVal CtrVal	FALL CHIN 5 FALL CHIN 5		99 99	1 1	2E+07 2E+07	2E+07 2E+07		34616 34174		413032 383749	449279 419912	COLEMAN COLEMAN		COLEMAN NFH COLEMAN NFH
35	CtrVal CtrVal			99 99	1	2E+07 2E+07	2E+07 2E+07		34174 34195		383749 384421	419912 420993	COLEMAN		COLEMAN NFH COLEMAN NFH
35	CtrVal CtrVal	FALL CHIN 5 FALL CHIN 5		99 99	1	2E+07 2E+07	2E+07 2E+07				384421 320317	420993 356465	COLEMAN COLEMAN		COLEMAN NFH COLEMAN NFH
35	CtrVal CtrVal	FALL CHIN 5 FALL CHIN 5		99 99	1	2E+07 2E+07	2E+07 2E+07		34703 34553		320317 409347	356465 445515			COLEMAN NFH COLEMAN NFH
35	CtrVal CtrVal	FALL CHIN 5 FALL CHIN 5		99 99	1	2E+07 2E+07	2E+07 2E+07		34553 36126		409347 404600	445515 441039	COLEMAN COLEMAN		COLEMAN NFH COLEMAN NFH
35	CtrVal	FALL CHIN 5		99	1	2E+07 2E+07	2E+07 2E+07		35908		404800 177517		COLEMAN		COLEMAN NFH COLEMAN NFH
55	CUIVAI	TITTE CUTIN D		55	-	20707	2010/	T	55700	, , , 1		274720	COLUMAN	141 11	COLEMAN NET

FRAM	FR Name	RUN N	NAME	Code	BYR	AGE	DAT1	DAT2	TAGGED	ADS	UNMARKED	FPP	TOTL	Stock	Hatchery
35	CtrVal	FALL C		52324	98	1	2E+07	2E+07	E	25695	129	25824		Feather River	Feather River
35	CtrVal	FALL C		52325	98	1	2E+07	2E+07	E	25977	131		26108	Feather River	Feather River
35	CtrVal	FALL C		52326	98	1	2E+07	2E+07	E	25576	337		25913	Feather River	Feather River
35	CtrVal		CHIN	52327	98	1	2E+07	2E+07	E	25518	336		25854	Feather River	Feather River
35	CtrVal	FALL C		52414	98	1	2E+07	2E+07	E	26489	133		26622	Feather River	Feather River
35	CtrVal	FALL C		52415	98	1	2E+07	2E+07	E	25814	130		25944	Feather River	Feather River
35	CtrVal	FALL C		52416	98	1	2E+07	2E+07	E	25621	390		26011	Feather River	Feather River
35	CtrVal	FALL C		52417	98	1	2E+07	2E+07	E	26174	399		26573	Feather River	Feather River
35	CtrVal		CHIN	62631	98	1	2E+07	2E+07	E	50877	1038		51915	Feather River	Feather River
35	CtrVal	FALL C		62632	98	1	2E+07	2E+07	Е	50893	1039		51932	Feather River	Feather River
35	CtrVal	FALL C		62633	98	1	2E+07	2E+07	E	51964	1060		53024	Feather River	Feather River
35	CtrVal	FALL C		62634	98	1	2E+07	2E+07	E	50928	1039		51967	Feather River	Feather River
35	CtrVal	FALL C		62635	98	1	2E+07	2E+07	Е	50883	1038		51921	Feather River	Feather River
35	CtrVal	FALL C		62636	98	1	2E+07	2E+07	E	50932	1039		51971	Feather River	Feather River
35	CtrVal	FALL C		62637	98	1	2E+07	2E+07	E	49140	1003		50143	Feather River	Feather River
35	CtrVal	FALL C		62638	98	1	2E+07	2E+07	E	50827	1037		51864	Feather River	Feather River
35	CtrVal		CHIN	62657	99	1	2E+07	2E+07	E	1E+05	1571		104736	Feather River	Feather River
35	CtrVal	FALL C		62658	99	1	2E+07	2E+07	E	3E+05	7238		301600	Feather River	Feather River
35	CtrVal	FALL C		62660	99	1	2E+07	2E+07	E	42275	775		43050	Feather River	Feather River
35	CtrVal	FALL C		53829	99	1	2E+07	2E+07	E	23582	780		24362	Feather River	Feather River
35	CtrVal	FALL C		53830	99	1	2E+07	2E+07	E	23352	772	210	24124	Feather River	Feather River
36 37	CtrVal CtrVal		CHIN CHIN	62649 62650	99 99	1 1	2E+07	2E+07 2E+07	E	17416		319 313	17735 17377	Feather River Feather River	Feather River Feather River
37	CtrVal CtrVal	FALL C		62650	99	1	2E+07 2E+07	2E+07 2E+07	E	17064 15770		289	16059	Feather River	Feather River
39	CtrVal	FALL C		62651	99	1	2E+07 2E+07	2E+07 2E+07	E	15541		285	15826	Feather River	Feather River
40	CtrVal	FALL C		62652	99	1	2E+07 2E+07	2E+07 2E+07	E	20926		205	21137	Feather River	Feather River
40	CtrVal	FALL C		62653	99	1	2E+07 2E+07	2E+07 2E+07	E	20928		211	20821	Feather River	Feather River
42	CtrVal		CHIN	62655	99	1	2E+07 2E+07	2E+07	E	250015		253	25258	Feather River	Feather River
43	CtrVal	FALL C		62656	99	1	2E+07	2E+07	E	25005		253	252564	Feather River	Feather River
36	WNCst		CHIN	50337	77	1	2E+07	2E+07	K	93363	2003	2E+06		COOK CR	QUINAULT NFH
36	WNCst	FALL C		50338	78	1	2E+07	2E+07	K	95123	9521		330481	COOK CR	QUINAULT NFH
36	WNCst	FALL C		50518	78	1	2E+07	2E+07	P	50473	2881	223037	53354	QUINAULT R	QUINAULT NFH
36	WNCst		CHIN	50519	78	1	2E+07	2E+07	E	50731	2004		52735	QUINAULT R	QUINAULT NFH
37	Wilpa	FALL C		633120	83	1	2E+07	2E+07	I	75251		885535	960788	FORK CR	FORKS CREEK H
37	Wilpa	FALL C		633121	83	1	2E+07	2E+07	I	76669	231	826948	903619	FORK CR	FORKS CREEK H
37	Wilpa		CHIN	633239	84	1	2E+07	2E+07	I	51566	444	309490	361500	FORK CR	FORKS CREEK H
37	Wilpa	FALL C	CHIN	633240	84	1	2E+07	2E+07	I	53002	293	812751	866046	FORK CR	FORKS CREEK H
37	Wilpa		CHIN	633241	84	1	2E+07	2E+07	I	50166	201	491705	542072	FORK CR	FORKS CREEK H
37	Wilpa	FALL C	CHIN	633815	85	1	2E+07	2E+07	I	52243	173	111250	163666	FORK CR	FORKS CREEK H
37	Wilpa	FALL C	CHIN	633816	85	1	2E+07	2E+07	I	51826	172	111249	163247	FORK CR	FORKS CREEK H
37	Wilpa	FALL C	CHIN	633817	85	1	2E+07	2E+07	I	52138	173	111250	163561	FORK CR	FORKS CREEK H
37	Wilpa	FALL C	CHIN	633818	85	1	2E+07	2E+07	I	52095	172	111249	163516	FORK CR	FORKS CREEK H
38	Hoko	FALL C	CHIN	211907	87	1	2E+07	2E+07	K	2E+05	3454	35964	239158	HOKO R	HOKO FALLS H
38	Hoko	FALL C	CHIN	211935	85	1	2E+07	2E+07	K	1E+05	11037	3520	138120	HOKO R	HOKO FALLS H
38	Hoko	FALL C	CHIN	212216	86	1	2E+07	2E+07	K	1E+05	3732	14286	162500	HOKO R	HOKO FALLS H

4.2 Sample FRAMBUILDER output

*	FRAMBUILDER - Coded Wire	
*	Tag Summarization Program	
*	Version 0.2 for Windows	
*		
*	Washington Department of	
*	Fish & Wildlife	
*	600 Capitol Way North	
*	Olympia, Washington 98501-1091	
* *	******	*

July 22, 2005

Session began at 16:42

* Selected option to summarize CWT recovery data * Summary format: Generate Input for FRAM Chinook Index Model * Description name: Hood Canal Fingerling Base05 * Description code: 16 * Selected option to apply age-specific PEF's from release database * Selected option to split catches between Treaty & Non-Treaty fisheries based on year-specific proportions * Selected option to backshift annual age of winter recoveries * Selected option to summarize data by calendar month * Selected option to delete actual WCVI sport recoveries * Selected option to delete actual Alaska sport recoveries * Selected option to generate WCVI sport catch from troll catch (recoveries) * Selected option to generate Alaska sport catch from troll catch (recoveries) * Summary Tables Located in File: C:\Data\05calib\FRAM05test.mdb [File Date Unknown or Unavailable] * CWT Recovery Table: tblFRAMcwtrecoveries2005 [File Date Unknown or Unavailable] * CWT Release Table: tblFRAMcwtreleases2005 [File Date Unknown or Unavailable] * Recovery Location Code Table: tblRMISlocations2005 [File Date Unknown or Unavailable] Translation Tables: * Areas Table: AREAS [File Date Unknown or Unavailable] * Gears Table: GEARS [File Date Unknown or Unavailable] * Fisheries Table: FISHERIES [File Date Unknown or Unavailable] FRAM Chinook Base Data 44

* Link Table: LINKS

[File Date Unknown or Unavailable]

* The following tags were specified:

Agcy	Tag	Ву	Race Speci		Stock		Hatche	ery		Tagged	Shed Tag	Untagged	Release Weight(gm)
COOP	631752	1978	Fall	Chin	GEORGE ADAMS	(PURDY)	PURDY	CR	16.0005	37439	0	147624	4.00
WDFW	631915	1978	Fall	Chin	FINCH CR	16.0222	FINCH	CR	16.0222	34300	0	752200	5.00
COOP	632041	1979	Fall	Chin	S PUGET SOUND	STOCKS	PURDY	CR	16.0005	73387	0	1512620	3.00
WDFW	632109	1979	Fall	Chin	FINCH CR	16.0222	FINCH	CR	16.0222	48954	0	669899	3.00

* The following weights by age were specified for each tag:

Tag	Age 2	Age 3	Age 4	Age 5
631915 632041	1.0000 1.0000 3.2879 3.2879	1.0000 1.0000 3.2879 3.2879	1.0000 1.0000 3.2879 3.2879	1.0000 1.0000 3.2879 3.2879

NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.383000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 1.399000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 1.399000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 1.399000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.383000 6 User = 2 Gear = 95 Time = 3 Catch = 1.475000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area = NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 5 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.447000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 5 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.407000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 4 Area = 6 User = 2 Gear = 95 Time = 1 Catch = 0.740000 WARNING: Invalid catch (recovery estimate): 0.00; tag: 631915; recovery date 19810817; recovery location 5M22203 03 10; fishery/gear 10; sample type: 5 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 0.464000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 0.482000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.383000 6 User = 2 Gear = 95 Time = 3 Catch = 4.500000 NOTE: Deleted Actual WCVI Sport Catch: Age/Index = 6 Area = NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area = 5 User = 2 Gear = 95 Time = 3 Catch = 1.071000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.416000 6 User = 2 Gear = 95 Time = 2 Catch = 0.355000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.355000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 3 Catch = 0.913000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 12 Area = 5 User = 2 Gear = 95 Time = 3 Catch = 0.574000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area = NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 5 User = 2 Gear = 95 Time = 2 Catch = 0.406000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 5 User = 2 Gear = 95 Time = 2 Catch = 0.212000 5 User = 2 Gear = 95 Time = 2 Catch = 0.439000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.395000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.355000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area = 6 User = 2 Gear = 95 Time = 2 Catch = 0.426000 6 User = 2 Gear = 95 Time = 1 Catch = 0.777000 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 4 Area =

```
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 1.030000
 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 1.030000
 NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 0.416000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 7 Area =
                                                                  6 User = 2 Gear = 95 Time = 1 Catch = 0.382000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 7 Area =
                                                                  6 User = 2 Gear = 95 Time = 1 Catch = 0.382000
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 0.355000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 0.613000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 5 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 0.493000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 5 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 0.447000
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 7 Area =
                                                                  6 User = 2 Gear = 95 Time = 1 Catch = 1.696556
 WARNING: Invalid catch (recovery estimate): 0.00; taq: 632041; recovery date 19820821; recovery location 2MS45
                                                                                                                     000;
fishery/gear 23; sample type: 5
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 11 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 1.903694
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 2.278515
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 2.140423
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 1.657102
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 2.656623
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 7 Area =
                                                                  6 User = 2 Gear = 95 Time = 1 Catch = 1.318448
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 4.619500
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 5 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 1.400645
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 12 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 1.472979
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 9 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 2.906504
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 2.656623
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 2.656623
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 8 Area =
                                                                  6 User = 2 Gear = 95 Time = 2 Catch = 2.130559
NOTE: Duplicated WCVI Troll as WCVI Sport: Age/Index = 6 Area =
                                                                  6 User = 2 Gear = 95 Time = 3 Catch = 2.955822
 Records extracted from database tblFRAMcwtrecoveries2005: 735
 Records used in constructing summary: 732
 Fabricated records used in summary: 49
NOTE: Numeric items on summary line:
 WDFW species code, stock (or summary code), age index, fishery code, time period, catch/escapement
*CATCH Hood Canal FIngerling Base05 CHINOOK
1
    16
         2 5 2
                       5.54 May-Jun West Coast Vancouver Island Net
         2 56 2
1
    16
                       3.72 May-Jun Seattle (10) Sport
1
    16
         3 4
                3
                       2.55 Jul-Sep North/Central British Columbia Net
    16
         3
                3
1
             6
                       1.90 Jul-Sep Georgia/Fraser/Johnstone Net
1
    16
         3 7
                3
                      33.59 Jul-Sep Canadian Juan de Fuca Net
1
    16
         3 15
                3
                      12.45 Jul-Sep Canadian Juan de Fuca Sport
1
    16
        3 33
                3
                       2.84 Jul-Sep Horse Mountain - Orford Reef Sport
    16
        3 40
                       1.18 Jul-Sep Nooksack-Samish (7B, 7C, 7D) Net [T]
1
                3
1
    16
         3 39
                3
                       0.57 Jul-Sep Nooksack-Samish (7B, 7C, 7D) Net [NT]
1
    16
        3 42 3
                       3.29 Jul-Sep Strait of Juan de Fuca (5 & 6) Sport
1
    16
        3 45 3
                       6.05 Jul-Sep Skagit (8-1) Sport
1
    16
         3 53 3
                      24.80 Jul-Sep Discovery-Admiralty (9) Sport
    16
         3 56 3
1
                      22.92 Jul-Sep Seattle (10) Sport
1
    16
         3 64
                3
                       9.49 Jul-Sep Hood Canal (12) Sport
1
    16
        3 66 3
                      40.48 Jul-Sep Hood Canal (12, 12B, 12C, 12D) Net [T]
1
    16
         3 67 3
                       6.92 Jul-Sep South Sound (13) Sport
         3 71 3
```

10.32 Jul-Sep Carr Inlet (13A) Net [T]

1

16

1	16	3	74	3	62.89	Jul-Sep	Escapement
1	16	4	10	1	15.17	Oct-Apr	-
1	16	4	11	1	1.52	Oct-Apr	
1	16	4	13	1	9.22	Oct-Apr	
1	16	4	14	1	29.93	Oct-Apr	
1	16	4	15	1	25.44	Oct-Apr	
1	16	4	17	1	11.64	Oct-Apr	-
1	16	4	36	1	43.43	Oct-Apr	
1	16	4	42	1	12.05	Oct-Apr	
1	16	4	45	1	20.17	Oct-Apr	
1	16	4	47	1	0.21	Oct-Apr	3 () 1
1	16	4	46	1	1.65	Oct-Apr	
1	16	4	53	1	42.42	Oct-Apr	
1	16	4	55	1	42.18	_	Discovery-Admiralty (6B, 9) Net [T]
1	16	4	54	1	2.66	Oct-Apr	
1	16	4	56	1	68.04	Oct-Apr	
1	16	4	57	1	50.71	Oct-Apr	
1	16	4	59	1	1.34	Oct-Apr	
1	16	4	58	1	10.14	Oct-Apr	
1	16	4	64	1	120.41	Oct-Apr Oct-Apr	
1	16	4	66	1	2.22	-	
1	16	4	65	1	1.53	Oct-Apr	
1	16	4	65 67	1	37.60	Oct-Apr	
1	16	4 5	5	2		Oct-Apr	
1		5		2	30.37	May-Jun May Jun	
	16		10		31.95	May-Jun	
1	16	5	11	2	3.19	May-Jun	
1	16	5	12	2	15.07	May-Jun	-
1	16	5	15	2	6.00	May-Jun	-
1	16	5	17	2	0.51	May-Jun	
1	16	5	16	2	1.96	May-Jun	
1	16	5	22	2	3.08	May-Jun	
1	16	5	42	2	4.87	May-Jun	
1	16	5	44	2	4.29	May-Jun	
1	16	5	45	2	7.95	May-Jun	
1	16	5	53	2	3.04	May-Jun	
1	16	5	57	2	2.72	May-Jun	
1	16	5	64	2	9.99	May-Jun	—
1	16	5	67	2	3.34	May-Jun	
1	16	6	4	3	11.47	Jul-Sep	
1	16	6	5	3	8.97	Jul-Sep	
1	16	6	9	3	15.39	Jul-Sep	
1	16	6	10	3	129.98	Jul-Sep	
1	16	6	11	3	13.00	Jul-Sep	
1	16	б	14	3	10.54	Jul-Sep	
1	16	б	17	3	2.48	Jul-Sep	
1	16	6	16	3	11.14	Jul-Sep	
1	16	6	22	3	15.45	Jul-Sep	
1	16	6	30	3	3.40	Jul-Sep	Orford Reef - Cape Falcon Troll
1	16	6	36	3	13.30	Jul-Sep	
1	16	б	38	3	6.36	Jul-Sep	San Juans (7, 7A, 6A) Net [T]
1	16	6	37	3	20.84	Jul-Sep	San Juans (7, 7A, 6A) Net [NT]

1	16	б	42	3	27.16	Jul-Sep	Strait of Juan de Fuca (5 & 6) Sport
1	16	6	44	3	21.25	Jul-Sep	Str. Juan de Fuca (4B, 5, 6, 6C, 6D) Net [T]
1	16	6	43	3	6.07	Jul-Sep	Str. Juan de Fuca (4B, 5, 6, 6C, 6D) Net [NT]
1	16	6	53	3	47.64	Jul-Sep	Discovery-Admiralty (9) Sport
1	16	6	64	3	9.23	Jul-Sep	Hood Canal (12) Sport
1	16	6	66	3	148.32	Jul-Sep	
1	16	6	69	3	7.65	Jul-Sep	South Sound (13, 13B-13K) Net [T]
1	16	6	71	3	3.82	Jul-Sep	Carr Inlet (13A) Net [T]
1	16	6	73	3	73.48	Jul-Sep	Freshwater net
1	16	6	73 74	3	90.20	Jul-Sep Jul-Sep	Escapement
1	16	7	/4 9	1	3.52	-	-
1		7	10	1		Oct-Apr	North/Central British Columbia Troll
	16				37.79	Oct-Apr	
1	16	7	11	1	3.78	Oct-Apr	
1	16	7	15	1	11.19	Oct-Apr	-
1	16	7	17	1	9.84	Oct-Apr	
1	16	7	36	1	13.21	Oct-Apr	
1	16	7	42	1	37.36	Oct-Apr	
1	16	7	53	1	13.04	-	
1	16	7	57	1	16.47	Oct-Apr	
1	16	7	64	1	34.30	Oct-Apr	
1	16	7	66	1	11.72	Oct-Apr	Hood Canal (12, 12B, 12C, 12D) Net [T]
1	16	7	65	1	14.95	Oct-Apr	Hood Canal (12, 12B, 12C, 12D) Net [NT]
1	16	7	67	1	16.04	Oct-Apr	South Sound (13) Sport
1	16	7	74	1	43.01	Oct-Apr	Escapement
1	16	8	9	2	16.70	May-Jun	North/Central British Columbia Troll
1	16	8	10	2	191.77	May-Jun	West Coast Vancouver Island Troll
1	16	8	11	2	19.18	May-Jun	West Coast Vancouver Island Sport
1	16	8	17	2	1.39	May-Jun	Cape Flattery-Quillayute (3, 4, 4B) Troll [T]
1	16	8	16	2	1.88	May-Jun	Cape Flattery-Quillayute (3, 4, 4B) Troll [NT]
1	16	8	18	2	5.00	- May-Jun	Cape Flattery-Quillayute (3, 4) Sport
1	16	8	26	2	1.22	May-Jun	
1	16	8	42	2	25.35	May-Jun	
1	16	8	53	2	10.88	May-Jun	
1	16	9	10	3	106.99	Jul-Sep	West Coast Vancouver Island Troll
1	16	9	11	3	10.70	Jul-Sep	West Coast Vancouver Island Sport
1	16	9	15	3	27.20	Jul-Sep	Canadian Juan de Fuca Sport
1	16	9	17	3	3.57	Jul-Sep	Cape Flattery-Quillayute (3, 4, 4B) Troll [T]
1	16	9	16	3	6.85	Jul-Sep	Cape Flattery-Quillayute (3, 4, 4B) Troll [NT]
1	16	9	42	3	3.81	Jul-Sep	Strait of Juan de Fuca (5 & 6) Sport
1	16	9	44	3	67.90	Jul-Sep	Straft of Suan de Fuca (4B, 5, 6, 6C, 6D) Net [T]
1	16	9	43	3	17.55	Jul-Sep	Str. Juan de Fuca (4B, 5, 6, 6C, 6D) Net $[T]$
1	16	9	43 50	3	6.16	-	
1		9	50 49			Jul-Sep	Stilly-Snohomish (8) Net [T]
	16			3	1.11	Jul-Sep	Stilly-Snohomish (8) Net [NT]
1	16	9	53	3	17.20	Jul-Sep	Discovery-Admiralty (9) Sport
1	16	9	66	3	153.14	Jul-Sep	Hood Canal (12, 12B, 12C, 12D) Net [T]
1	16	9	65	3	5.00	Jul-Sep	Hood Canal (12, 12B, 12C, 12D) Net [NT]
1	16	9	69	3	4.23	Jul-Sep	South Sound (13, 13B-13K) Net [T]
1	16	9	71	3	22.97	Jul-Sep	Carr Inlet (13A) Net [T]
1	16	9	73	3	105.34	Jul-Sep	Freshwater net
1	16	9	74	3	87.42	Jul-Sep	-
1	16	10	66	1	1.19	Oct-Apr	Hood Canal (12, 12B, 12C, 12D) Net [T]

October 2008

1	16	10	65	1	6.05	Oct-Apr	Hood Canal (12, 12B, 12C, 12D) Net [NT]
1	16	10	74	1	83.46	Oct-Apr	Escapement
1	16	11	10	2	19.04	May-Jun	West Coast Vancouver Island Troll
1	16	11	11	2	1.90	May-Jun	West Coast Vancouver Island Sport
1	16	12	10	3	23.86	Jul-Sep	West Coast Vancouver Island Troll
1	16	12	11	3	2.39	Jul-Sep	West Coast Vancouver Island Sport
1	16	12	42	3	7.91	Jul-Sep	Strait of Juan de Fuca (5 & 6) Sport
1	16	12	66	3	6.78	Jul-Sep	Hood Canal (12, 12B, 12C, 12D) Net [T]
1	16	12	65	3	1.39	Jul-Sep	Hood Canal (12, 12B, 12C, 12D) Net [NT]
1	16	12	73	3	60.86	Jul-Sep	Freshwater net
1	16	12	74	3	12.36	Jul-Sep	Escapement
*END	Но	od C	anal	FInge	erling Ba	se05 CHI	NOOK

4.3 FRAM Chinook Stock Profiles

FRAM UNMARKED STOCK	1. Nooksack/Samish fall fingerling (NkSm
NUMBER/NAME/ABBREVIATION:	F1Fi)
MANAGEMENT UNITS REPRESENTED:	Natural fall chinook production from Nooksack R., Samish R. and Area 7-7A streams.
	Hatchery production from Nooksack, Samish, and Skookum Creek hatcheries and Lummi Tribe Sea Ponds.
CALIBRATION CWT GROUPS:	050324 Skookum Creek Hatchery (1977 brd) 050325 Skookum Creek Hatchery (1977 brd) 050726 Skookum Creek Hatchery (1979 lid) 050727 Lummi Sea Ponds (1979 brd) 632042 Samish Hatchery (1979 brd) 632101 Samish Hatchery (1979 brd) 632102 Samish Hatchery (1979 brd)
VALIDATION CWT BROODS	1974-75, 1985-on
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 982.1*(1-e**(-0.029(t-2.83)))$ where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 $CV = 0.12$
$L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$
where $t = (Age - 1) * 12$	Age 5 CV = 0.09
+ midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$ where Age 2 CV = 0.03
(from generalized PS summer/fall	-
fingerling CWT groups)	Age 4 $CV = 0.11$
ACCOUNTED IN TERMINAL RUN (TR)	Age 5 CV = 0.11
(or Terminal Area Abundance	Natural and hatchery escapement in Nooksack/Samish/Area 7-7A streams.
(TAA) in Puget Sound):	Freshwater net
	Marine net in Area 7B,C for Samish and
	Nooksack, Area 7B,C,D for Lummi
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement in Nooksack/Samish/Area 7-7A streams Freshwater net
	Marine net in Area 7C for Samish and
	Nooksack, Area 7C,D for Lummi
	Base Period Escapement=20224
SCALE DATA ORIGIN:	Nooksack River net
	Marine Area 7B,C,D net
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW Escapement Records (jacks) WDFW Hatchery Release Reports

FRAM UNMARKED STOCK	3. North Fork Nooksack Native early (NFNK
NUMBER/NAME/ABBREVIATION:	Sprg)
MANAGEMENT UNITS REPRESENTED:	North Fork Nooksack River springs
CALIBRATION CWT GROUPS:	632846 Nooksack Hatchery (1984 brd, NFK, fing.)
	633452 Nooksack Hatchery (1984 brd, NFK, year.)
	633453 Nooksack Hatchery (1984 brd, NFK, year.)
	634422 Nooksack Hatchery (1988 brd, NFK, year.)
VALIDATION CWT GROUPS	Do not use 1991
Von Bertalanffy Growth Function	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 $CV = 0.12$
$L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$ Age 5 $CV = 0.09$
where $t = (Age-1)*12$	
+ midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$ where Age 2 CV = 0.03
(from generalized PS summer/fall	Age 3 CV = 0.11
fingerling CWT groups)	Age 4 $CV = 0.11$
	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance (TAA) in Puget Sound):	Freshwater net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR
	Base Period Escapement=500
SCALE DATA ORIGIN:	1??
SUPPLEMENTAL DATA SOURCES:	Puget Sound Spring Chinook Status Reports

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	5. South Fork Nooksack early (SFNK Sprg)
MANAGEMENT UNITS REPRESENTED:	South Fork Nooksack River springs
CALIBRATION CWT GROUPS:	<pre>632846 Nooksack Hatchery (1984 brd, NFK, fing.) 633452 Nooksack Hatchery (1984 brd, NFK, year.) 633453 Nooksack Hatchery (1984 brd, NFK, year.)</pre>
	634422 Nooksack Hatchery (1988 brd, NFK, year.)
VALIDATION CWT GROUPS	Do not use 1991
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 982.1*(1-e^{*}(-0.029(t-2.83)))$ where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 $CV = 0.12$
$L_{max}^{*}(1-e^{**}(-k(t-t_{0})))$	Age 4 CV = 0.09
	Age 5 CV = 0.09
where t= (Age-1)*12	
+ midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$
	where Age 2 $CV = 0.03$
(from generalized PS summer/fall	_
fingerling CWT groups)	Age 4 $CV = 0.11$
	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance	Freshwater net
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR
	Base Period Escapement=500
SCALE DATA ORIGIN:	1??
SUPPLEMENTAL DATA SOURCES:	Puget Sound Spring Chinook Status Reports

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	7. Skagit summer/fall fingerling (Skag F1Fi)
MANAGEMENT UNITS REPRESENTED:	Wild production from Skagit River including upper Skagit summers, lower Sauk summers, and lower Skagit falls Marblemount (Skagit) Hatchery
CALIBRATION CWT GROUPS:	631606 Skagit Hatchery (1976 brd brd) 631624 Skagit R. (wild, 1976 brd) 631625 Skagit R. (wild, 1976 brd) 631625 Skagit R. (wild, 1976 brd) 631626 Skagit R. (wild, 1976 brd) 631627 Skagit R. (wild, 1976 brd) 631628 Skagit R. (wild, 1976 brd) 631630 Skagit R. (wild, 1977 brd) 631631 Skagit R. (wild, 1977 brd) 631632 Skagit R. (wild, 1977 brd) 631633 Skagit R. (wild, 1977 brd) 631635 Skagit R. (wild, 1977 brd) 631636 Skagit R. (wild, 1977 brd)
VALIDATION CWT GROUPS	1974, 1975, 1978-81
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀))</pre>	Mean $FL_{mixmature} = 982.1*(1-e**(-0.029(t-2.83)))$ where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
where t= (Age-1)*12 + midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$ where Age 2 CV = 0.03 Age 3 CV = 0.11
(from generalized PS summer/fall fingerling CWT groups)	Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Freshwater net Marine Area 8 net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=10443
SCALE DATA ORIGIN:	Freshwater net Marine Area 8 net
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks) WDFW hatchery release reports

9. Skagit summer/fall yearling (Skag
FlYr)
Hatchery production from Skagit River Marblemount (Skagit) Hatchery
631610 Skagit Hatchery (1976 brd)
None
Mean FL _{mixmature} =802.6*(1-e**(-0.051(t-9.57)) where Age 2 CV = 0.17
Age 3 CV = 0.14
Age 4 CV = 0.10
Age 5 CV = 0.10
Mean $FL_{mature} = 1460.9*(1-e**(-0.018(t-5.42))$
where Age 2 CV = 0.11
Age 3 CV = 0.11
Age 4 CV = 0.11
Age 5 CV = 0.11
Natural and hatchery escapement
Freshwater net
Marine Area 8 net
Same as TR
Base Period Escapement=2105
Freshwater net
Marine Area 8 net
Puget Sound Run Reconstruction (RR) WDFW escapement records WDFW hatchery release reports

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	11. Skagit spring yearling (Skag SpYr)
MANAGEMENT UNITS REPRESENTED:	Skagit River wild Marblemount (Skagit) Hatchery Spring
CALIBRATION CWT GROUPS:	633323 Skagit Hatchery (1985 brd) 633314 Skagit Hatchery (1986 brd) 634744 Skagit Hatchery (1987 brd) 634902 Skagit Hatchery (1987 brd) 635026 Skagit Hatchery (1987 brd)
VALIDATION CWT GROUPS	1981-90 brd
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 904.0*(1-e**(-0.043(t-9.54)))$ where Age 2 CV = 0.17
Mean Fork Length(cm) = $L_{max}*(1-e**(-k(t-t_0)))$	Age 3 CV = 0.14 Age 4 CV = 0.10 Age 5 CV = 0.10
where t= (Age-1)*12 + midpt. of time step	Mean FL _{mature} =938.6*(1-e**(-0.048(t-11.31)) where Age 2 CV = 0.11 Age 3 CV = 0.11
(From Skagit H CWT group)	Age 4 $CV = 0.11$ Age 5 $CV = 0.11$ Age 5 $CV = 0.11$
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound) [:]	Natural and hatchery escapement Area 8 net Freshwater net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=1391
SCALE DATA ORIGIN:	???
SUPPLEMENTAL DATA SOURCES:	Puget Sound Spring Chinook Status Reports

FRAM UNMARKED STOCK	
NUMBER/NAME/ABBREVIATION:	13. Snohomish summer/fall fingerling (Snoh FlFi)
MANAGEMENT UNITS REPRESENTED:	Wild production from Snohomish River system Wallace R. Hatchery fingerlings
CALIBRATION CWT GROUPS:	For preterm.: 212221 Stillaguamish H. (1986 brd), 212555 Still. H. (1987 brd) 213147 Still. H. (1988 brd) 211826 Still. H. (1989 brd) 212026 Still. H. (1990 brd)
	For terminal H.R.: 212204 Tulalip H (1986 brd) 212544 Tulalip H.(1987 brd) 213141 Tulalip H.(1988 brd)
VALIDATION CWT GROUPS	None
Von Bertalanffy Growth Function	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11
<pre>Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀)) where t= (Age-1)*12</pre>	Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
+ midpt. of time step	<pre>Mean FL_{mature} =1085.2*(1-e**(-0.030(t-1.59)) where Age 2 CV = 0.03 Age 3 CV = 0.11</pre>
(from generalized PS summer/fall fingerling CWT groups)	
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Freshwater net Marine Area 8A net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement Freshwater net Base Period Escapement=4814
SCALE DATA ORIGIN:	Marine Area 8A net for fingerling age composition
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks) WDFW hatchery release reports for basin yearling vs fingerling poundage percentage for ETRS breakdown

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	15. Snohomish summer/fall yearling (Snoh FlYr)
NONDER/NAME/ADDREVIATION.	
MANAGEMENT UNITS REPRESENTED:	Wild summer/fall yearling production from
	Snohomish
	Wallace R. Hatchery yearlings
CALIBRATION CWT GROUPS:	631701 Wallace R. (Skykomish) Hatchery
	Summer chinook (1976 brd)
VALIDATION CWT GROUPS	None
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 802.6*(1-e**(-0.051(t-9.57)))$
	where Age 2 CV = 0.17
Mean Fork Length(mm)=	Age 3 $CV = 0.14$
L_{max} *(1-e**(-k(t-t ₀)))	Age 4 $CV = 0.10$
where t= (Age-1)*12	Age 5 CV = 0.10
+ midpt. of time step	Mean FL _{mature} =1460.9*(1-e**(-0.051(t-5.42))
	where Age 2 CV = 0.11
	Age 3 $CV = 0.11$
(from So. PS summer/fall yearling	5
CWT groups)	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance	Freshwater net
(TAA) in Puget Sound):	Marine Area 8A net
ACCOUNTED IN EXTREME TERMINAL	Natural and hatchery escapement
RUN SIZE (ETRS):	Freshwater net
	Base Period Escapement=3352
SCALE DATA ORIGIN:	Marine Area 8A net for yearling age
	composition
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR)
	WDFW escapement records (jacks)
	WDFW hatchery release reports for basin
	yearling vs fingerling poundage
	percentage for ETRS breakdown

FRAM UNMARKED STOCK	
NUMBER/NAME/ABBREVIATION:	17. Stillaguamish summer/fall fingerling (Stil F1Fi)
MANAGEMENT UNITS REPRESENTED:	Wild and supplementation production in Stillaguamish River
CALIBRATION CWT GROUPS:	212221 Stillaguamish H. (1986 brd) 212555 Stillaguamish H. (1987 brd) 213147 Stillaguamish H. (1988 brd) 211826 Stillaguamish H. (1989 brd) 212026 Stillaguamish H. (1990 brd)
VALIDATION CWT GROUPS	1980-83, 1986-91
Von Bertalanffy Growth Function	<pre>Mean FL_{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11</pre>
Mean Fork Length(mm) = $L_{max}*(1-e**(-k(t-t_0)))$	Age 3 $CV = 0.12$ Age 4 $CV = 0.09$ Age 5 $CV = 0.09$
where t= (Age-1)*12 + midpt. of time step	Mean FL _{mature} =1085.2*(1-e**(-0.030(t-1.59)) where Age 2 CV = 0.03 Age 3 CV = 0.11
(from generalized PS summer/fall fingerling CWT groups)	5
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement (0) Freshwater net Marine Area 8A
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement (0) Freshwater net Base Period Escapement=831
SCALE DATA ORIGIN:	Marine Area 8A?
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR)

FRAM UNMARKED STOCK	19. Tulalip summer/fall fingerling (Tula
NUMBER/NAME/ABBREVIATION:	FlFi)
MANAGEMENT UNITS REPRESENTED:	Tulalip Hatchery
CALIBRATION CWT GROUPS:	212204 Tulalip H. (1986 brd) 212544 Tulalip H. (1987 brd) 213141 Tulalip H. (1988 brd)
VALIDATION CWT GROUPS	1986-91
Von Bertalanffy Growth Function	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 CV = 0.12
$L_{max} * (1 - e^{*} * (-k(t - t_0)))$	Age 4 CV = 0.09
	Age 5 CV = 0.09
where t= (Age-1)*12	
+ midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$
	where Age 2 CV = 0.03
	Age 3 CV = 0.11
(from generalized PS summer/fall	Age 4 $CV = 0.11$
fingerling CWT groups)	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance	Marine Area 8D net
(TAA) in Puget Sound):	Marine Area 8A net
ACCOUNTED IN EXTREME TERMINAL	Natural and hatchery escapement
RUN SIZE (ETRS):	Marine Area 8D net
	Base Period Escapement=1
SCALE DATA ORIGIN:	Marine Area 8D
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR)

FRAM UNMARKED STOCK	
NUMBER/NAME/ABBREVIATION:	21. Mid Puget Sound fall fingerling (MiPS FlFi)
MANAGEMENT UNITS REPRESENTED:	Natural production from Lake Washington, Green-Duwamish Rivers, Puyallup River, Misc. Area 10 streams (Seattle area), Misc. Area 10E streams (Port Orchard)
	Hatchery production from Issaquah, Soos Creek (Green River), Voights Creek (Puyallup), Crisp Creek, Grovers, Icy Creek facilities
CALIBRATION CWT GROUPS:	631814 Voights Creek (1978 brd) 631842 Voights Creek (1978 brd) 631935 Soos Creek (1978 brd) 631936 Soos Creek (1978 brd) 631940 Issaquah (1978 brd) 631945 Soos Creek (1978 brd) 631943 Issaquah (1979 brd) 631944 Soos Creek (1979 brd) 632020 Voights Creek (1979 brd)
VALIDATION CWT GROUPS	1974-75, 1978-on
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀))</pre>	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
where t= (Age-1)*12 + midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$ where Age 2 CV = 0.03 Age 3 CV = 0.11
(from generalized PS summer/fall fingerling CWT groups) ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Age 4 CV = 0.11 Age 5 CV = 0.11 Natural and hatchery escapement in Lake Washington, Green-Duwamish River, Puyallup River and Area 10, 10E streams
	Freshwater net in Green-Duwamish, Puyallup rivers
	Marine net fisheries for stocks destined for Lake Washington (Area 10, 10B,C,D); Green Duwamish (Area 10, 10A); Puyallup (Area 10, 11, 11A); Misc. Area 10 streams (Area 10); Misc Area 10E streams (Area 10, 10E)
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement in Lake Washington, Green-Duwamish River, Puyallup River and Area 10, 10E streams
	Freshwater net in Green-Duwamish, Puyallup rivers
	Marine net fisheries for stocks destined for Lake Washington (Area 10B,C,D); Green Duwamish (Area 10A); Puyallup (Area 11A); Misc Area 10E streams (Area 10E)
	Base Period Escapement=20018
	1

SCALE DATA ORIGIN:	Net fisheries for Lake Washington (Area 10B,C,D,F); Green-Duwamish (Area 10A and river); Puyallup (Area 11A and river); Misc. 10 streams (Area 10A and Green); Misc. 10E streams (Area 10E)
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks)

FRAM UNMARKED STOCK	
NUMBER/NAME/ABBREVIATION:	23. UW Accelerated fall fingerling (UWAc
	F1Fi)
MANAGEMENT UNITS REPRESENTED:	Accelerated fingerling production from
	University of Washington Hatchery
CALIBRATION CWT GROUPS:	111601-02 UW Portage Bay (1977 brd)
	111603-06 UW Portage Bay (1978 brd)
	111617-18 UW Portage Bay (1978 brd)
	111624 UW Portage Bay (1978)
	111627-32 UW Portage Bay (1979)
VALIDATION CWT GROUPS	1980-84
VALIDATION CWI GROUPS	1980-84
Von Bertalanffy Growth Function	Mean FL _{mixmature} =889.6*(1-e**(-0.039(t-1.96))
	where Age 2 CV = 0.17
Mean Fork Length(mm)=	Age 3 $CV = 0.14$
L_{max} *(1-e**(-k(t-t ₀))	Age 4 CV = 0.10
	Age 5 $CV = 0.10$
where $t = (Age-1)*12$	
+ midpt. of time step	Mean $FL_{mature} = 1460.9*(1-e^{*}(-0.018(t-5.42)))$
	where Age 2 CV = 0.11 Age 3 CV = 0.11
(from UW for mixed maturity; So. PS	5
summer/fall yearling for mature)	Age 5 $CV = 0.11$
summer/fall yearing for mature)	Age J CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Hatchery escapement
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
ACCOUNTED IN. EXTREME TERMINAL	Same as TR
RUN SIZE (ETRS):	
	Base Period Escapement=1062
SCALE DATA ORIGIN:	??
SUPPLEMENTAL DATA SOURCES:	University of Washington

FRAM UNMARKED STOCK	25. South Puget Sound fall fingerling (SPSo FlFi)
NUMBER/NAME/ABBREVIATION:	
MANAGEMENT UNITS REPRESENTED:	Wild production in deep south Puget sound tributaries including Nisqually and Deschutes Rivers, Minter Creek, and Misc Area 13 streams
	Hatchery production from Minter Creek, Hupp Springs, Coulter Creek, Kalama Creek, Garrison Springs (Chambers Creek), Fox Island Net Pens, South Sound Net Pens, Allison Springs, McAllister Creek facilities
CALIBRATION CWT GROUPS:	631907 Minter Creek Hatchery (1978) 050722 Kalama Creek Hatchery (1979) 631903 Garrison Springs Hatchery (1979) 632063 Coulter Creek Hatchery (1979) 632103 Deschutes Hatchery (1979) 632104 Minter Creek Hatchery (1979)
VALIDATION CWT GROUPS	1974-75, 1978, 1980-on
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= Lmax*(1-e**(-k(t-t_0)) where t= (Age-1)*12</pre>	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
+ midpt. of time step	<pre>Mean FL_{mature} =1085.2*(1-e**(-0.030(t-1.59)) where Age 2 CV = 0.03 Age 3 CV = 0.11</pre>
(from generalized PS summer/fall fingerling CWT groups)	Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement in Nisqually, Deschutes rivers, Chambers Creek, and Misc. Area 13, 13A Carr Inlet/Minter Creek, 13B streams
	Freshwater net
	Marine net fisheries for stocks destined for Nisqually River (Area 10, 11, 13); Deschutes River (Area 10, 11, 13, 13B); Chambers Creek (Area 10, 11, 13); Misc. Area 13 streams (Area 10, 11, 13); Misc 13A streams (Area 10, 11, 13, 13A); Misc. 13B streams (Area 10, 11, 13, 13B)

ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement in Nisqually, Deschutes rivers, Chambers Creek, and Misc. Area 13, 13A Carr Inlet/Minter Creek, 13B streams Freshwater net Marine net fisheries for stocks destined for Nisqually River (none); Deschutes River (Area 13B); Chambers Creek (none); Misc. Area 13 streams (none); Misc. 13A streams (Area 13A); Misc. 13B streams (Area 13B) Base Period Escapement=10230
SCALE DATA ORIGIN:	Nisqually River net and Marine net fisheries in Area 13/13B and Area 13C-K
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks)

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	27. South Puget Sound fall yearling (SPSo FlYr)
MANAGEMENT UNITS REPRESENTED:	Fall yearling portion of hatchery chinook in Mid- and South Puget Sound
CALIBRATION CWT GROUPS:	<pre>631853 Fox Island Net Pens (1978) 631905 Green River Hatchery (1978) 632004 Deschutes Hatchery (1978) 632023 Allison Springs Hatchery (1978) 632015 Deschutes Hatchery (1979) 632019 Deschutes Hatchery (1979) 632027 Fox Island Net Pens (1979) 632055-56 Coulter Creek Hatchery (1979) 632128 Crisp Creek Hatchery (1979) 632220 Hupp Springs Sp. Channel (1979) 632221 Allison Springs Hatchery (1979). 632228 Allison Springs Hatchery (1979)</pre>
VALIDATION CWT GROUPS	1974-75, 1980-on
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= Lmax*(1-e**(-k(t-t_0)) where t= (Age-1)*12</pre>	<pre>Mean FL_{mixmature} =802.6*(1-e**(-0.051(t-9.57)) where Age 2 CV = 0.17 Age 3 CV = 0.14 Age 4 CV = 0.10 Age 5 CV = 0.10</pre>
<pre>(from So. PS summer/fall yearling CWT groups)</pre>	<pre>Mean FL_{mature} =1460.9*(1-e**(-0.018(t-5.42)) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11</pre>
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Run Reconstruction TR of Mid- and South Puget Sound chinook adjusted to yearlings leaving Marine Area 10 Base Period Escapement=330

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	29. White River spring fingerling (White SpFi
MANAGEMENT UNITS REPRESENTED:	South Puget Sound spring fingerling
CALIBRATION CWT GROUPS:	211659 White River Hatchery (91 brd) 212209 White River Hatchery (91 brd) 212245 White River Hatchery (91 brd) 212246 White River Hatchery (91 brd) 212321 White River Hatchery (92 brd) 212322 White River Hatchery (92 brd) 212462 White River Hatchery (93 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function Mean Fork Length(mm)=	<pre>Mean FL_{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11 Age 3 CV = 0.12</pre>
$L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$ Age 5 $CV = 0.09$
where t= (Age-1)*12 + midpt. of time step	<pre>Mean FL_{mature} =1085.2*(1-e**(-0.030(t-1.59)) where Age 2 CV = 0.03 Age 3 CV = 0.11</pre>
(from generalized PS summer/fall fingerling CWT groups)	5
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement to White River Hatchery or Buckley Trap Freshwater net Base Period Escapement=100
SCALE DATA ORIGIN:	Age composition from CWT survival rate applied to number released
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks) WDFW hatchery release reports

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	31. Hood Canal fall fingerling (HdCl FlFi)
MANAGEMENT UNITS REPRESENTED:	Wild production from Hood Canal region including Dosewallips, Duckabush, Hamma Hamma, Skokomish, Quilcene rivers and misc Area 12 streams
	Hatchery production from George Adams, Hood Canal (Hoodsport), Port Gamble Pens,
CALIBRATION CWT GROUPS:	631752 George Adams (1978) 631915 Hood Canal (1978) 632041 George Adams (1979) 632109 Hood Canal (1979)
	1974-75, 1980-81, 1985-on
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function Mean Fork Length(mm)= L _{max} *(1-e**(-k(t-t ₀))	<pre>Mean FL_{mixmature} =982.1*(1-e**(-0.029(t-2.83)) where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09</pre>
where t= (Age-1)*12 + midpt. of time step	Age 5 CV = 0.09 Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59))$
(from generalized PS summer/fall fingerling CWT groups)	where Age 2 CV = 0.03 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance (TAA) in Puget Sound):	Freshwater net (primarily Skokomish)
	Marine net fisheries for stocks destined for Dosewallip (Area 12, 12B), Duckabush (Area 12, 12B), Mamma Hamma (Area 12 12B), Skokomish (Area 12, 12B,C,D), South Hood Canal (Area 12, 12B,C), Southeast Hood Canal (Area 12, 12B,C,D), Hoodsport (Area 12, 12B,C,D), Port Gamble (Area 9A,12)
	Natural and hatchery escapement
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Freshwater net (primarily Skokomish)
	Marine net fisheries for stocks destined for Skokomish (Area 12D), Southeast Hood Canal (Area 12D), Hoodsport (Area 12D), Port Gamble (Area 9A)
	Base Period Escapement=4078

SCALE DATA ORIGIN:	Net fisheries in Skokomish R. and marine Area 12 B,C,D
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks)

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	33. Hood Canal fall yearling (HdCl FlYr)
MANAGEMENT UNITS REPRESENTED:	Fall yearlings from Hood Canal hatcheries
CALIBRATION CWT GROUPS:	631637 Hood Canal Hatchery (1978 brd) 631840 McKernan Hatchery (1978) 631852 McKernan Hatchery (1978) 632057 Hood Canal Hatchery (1979)
VALIDATION CWT GROUPS	1974, 1980-81, 1985-87, 1989-on
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀)) where t= (Age-1)*12</pre>	Age 5 CV = 0.11 Yearling portion of the following components determined from CWT rather than scales because of small sample sizes
	Natural and hatchery escapement 0 Freshwater net (primarily Skokomish) Marine net fisheries for stocks destined for Dosewallip (Area 12, 12B), Duckabush (Area 12, 12B), Hamma Hamma (Area 12 12B), Skokomish (Area 12, 12B,C,D), South Hood Canal (Area 12, 12B,C), Southeast Hood Canal (Area 12, 12B,C,D), Hoodsport (Area 12, 12B,C,D), Port Gamble (Area 9A,12)
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Natural and hatchery escapement Freshwater net (primarily Skokomish) Marine net fisheries for stocks destined for Skokomish (Area 12D), Southeast Hood Canal (Area 12D), Hoodsport (Area 12D), Port Gamble (Area 9A) Base Period Escapement=126
SCALE DATA ORIGIN:	Net fisheries in Skokomish R. and marine Area 12 B,C,D for age composition of yearlings CWTs used to apportion Hood Canal fall chinook into fingerling and yearling type

SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR) WDFW escapement records (jacks)

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	35. Juan de Fuca Tribs Fall Fingerling (SJDF FlFi)
MANAGEMENT UNITS REPRESENTED:	Natural production from Hoko, Elwha, Dungeness and minor tributaries
	Hatchery production from Hoko, Elwha, Dungeness
CALIBRATION CWT GROUPS:	631919 Elwha Spawning Channel (78 brd) 632107 Elwha Spawning Channel (79 brd) 633038,633039 Elwha (83 brd) 633419,633420 Elwha (84 brd) 633543,633544 Elwha (85 brd)
VALIDATION CWT GROUPS	1985-87, 1989 on Hoko
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 982.1*(1-e**(-0.029(t-2.83)))$ where Age 2 CV = 0.11
Mean Fork Length(mm) = $L_{max}*(1-e**(-k(t-t_0)))$	Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
where t= (Age-1)*12 + midpt. of time step	Mean $FL_{mature} = 1085.2*(1-e**(-0.030(t-1.59)))$ where Age 2 CV = 0.03
(from generalized PS summer/fall fingerling CWT groups)	Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Freshwater Net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=2365
SCALE DATA ORIGIN:	??
SUPPLEMENTAL DATA SOURCES:	Puget Sound Run Reconstruction (RR)

FRAM UNMARKED STOCK	37. Oregon Hatchery Tule (OR LRH)
NUMBER/NAME/ABBREVIATION:	
MANAGEMENT UNITS REPRESENTED:	Natural and hatchery fall chinook from
MANAGEMENT ONITS REPRESENTED.	-
	Oregon tribs below Bonneville Dam
CALIBRATION CWT GROUPS:	071842 Bonneville Hatchery (78 brd)
	072157 Bonneville Hatchery (79 brd)
	072163 Oxbow Hatchery (79 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =970.8*(1-e**(-0.038(t-2.60))
-	where Age 2 $CV = 0.11$
Mean Fork Length(mm)=	Age 3 CV = 0.12
$L_{max}^{*}(1-e^{**}(-k(t-t_{0})))$	Age $4 \text{CV} = 0.09$
	Age 5 CV = 0.09
where t= (Age-1)*12	
+ midpt. of time step	Mean $FL_{mature} = 912.8*(1-e**(-0.064(t-3.97)))$
	where Age 2 CV = 0.11
	Age 3 CV = 0.11
(from OR and Spring Crk Tule CWT	Age 4 CV = 0.11
groups)	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance	Columbia River Net
	Columbia River and tributary sport
(TAA) in Puget Sound):	Same as TR
ACCOUNTED IN EXTREME TERMINAL	
RUN SIZE (ETRS):	Base Period Escapement=42000
SCALE DATA ORIGIN:	Columbia River Net, Sport, Escapement
SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries
	Status Report
	Status Report

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	39. Washington Hatchery Tule (WA LRH)
MANAGEMENT UNITS REPRESENTED:	Natural and hatchery fall chinook from Washington tribs below Bonneville Dam
CALIBRATION CWT GROUPS:	631802 Cowlitz Salmon Hatchery (77 brd) 631942 Cowlitz Salmon Hatchery (78 brd) 632154 Cowlitz Salmon Hatchery (79 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function Mean Fork Length(mm)=	Mean FL _{mixmature} =1182.9*(1-e**(-0.024(t-3.41)) where Age 2 CV = 0.11 Age 3 CV = 0.12
$L_{max} * (1 - e * * (-k(t - t_0)))$	Age 4 CV = 0.09 Age 5 CV = 0.09
<pre>where t= (Age-1)*12 + midpt. of time step (from Cowlitz H CWT groups)</pre>	<pre>Mean FL_{mature} =1122.5*(1-e**(-0.020(t+5.80)) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11</pre>
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=33400
SCALE DATA ORIGIN: SUPPLEMENTAL DATA SOURCES:	Columbia River Net, Sport, Escapement Columbia River Fish Runs and Fisheries
	Status Report

FRAM UNMARKED STOCK	41. Lower Columbia River Wild (Low CR
NUMBER/NAME/ABBREVIATION:	wild)
MANAGEMENT UNITS REPRESENTED:	Natural "bright" fall chinook from Lewis
	River and small components in other Lower
	Columbia tribs (Cowlitz, Sandy)
CALIBRATION CWT GROUPS:	631611 Lewis River Hatchery (77 brd)
	631618 Lewis River Wild (77 brd)
	631619 Lewis River Wild (77 brd)
	631813 Lewis River Hatchery (78 brd)
	631858 Lewis River Wild (78 brd)
	631859 Lewis River Wild (78 brd)
	631902 Lewis River Wild (78 brd)
	631902 Lewis River Wild (78 brd) 631920 Speelyai Hatchery (78 brd)
	632002 Lewis River Wild (78 brd)
VALIDATION CWT GROUPS	032002 Lewis River Wild (70 bid)
VALIDATION CWI GROUPS Von Bertalanffy Growth Function	Mean FL _{mixmature} =3412.3*(1-e**(-0.006(t-1.57))
Von Bertalanity Growth Function	Weall $FL_{mixmature} = 3412.3^{(1-e^{-1}(-0.000(t-1.57)))}$ where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 $CV = 0.12$
$L_{max}^{*}(1-e^{**}(-k(t-t_{0})))$	Age 4 CV = 0.09
	Age 5 CV = 0.09
where t= (Age-1)*12	
+ midpt. of time step	Mean FL _{mature} =1294.1*(1-e**(-0.013(t+10.29))
	where Age 2 $CV = 0.11$
	Age 3 $CV = 0.11$ Age 4 $CV = 0.11$
(from No. Lewis R wild fingerling	Age $5 \text{ CV} = 0.11$
CWT groups)	
ACCOUNTED IN TERMINAL RUN	Natural and hatchery escapement
(TR)	Columbia River Net
(or Terminal Area Abundance	Columbia River and tributary sport
(TAA) in Puget Sound):	
(IAA) III FUYEC SOUND).	Same as TR
ACCOUNTED IN EXTREME TERMINAL	Base Period Escapement=14192
RUN SIZE (ETRS):	Dase Period Escapement=14192
SCALE DATA ORIGIN:	Columbia River Net, Sport, Escapement
SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries
	Status Report

FRAM UNMARKED STOCK	43. Bonneville Pool Hatchery (BPH Tule)
NUMBER/NAME/ABBREVIATION:	
MANAGEMENT UNITS REPRESENTED:	Tule type hatchery fall chinook from Spring Creek NFH and some past Klickitat Hatchery, White Salmon Rearing Pond and Little White Salmon NFH. Minor tule type natural production in Bonneville Pool tributataries (Wind, White Salmon, Klickitat R)
CALIBRATION CWT GROUPS:	050433 Spring Creek (78 brd) 050434 Spring Creek (78 brd) 050444 Spring Creek (78 brd) 050446 Spring Creek (78 brd) 050639 Spring Creek (79 brd) 050640 Spring Creek (79 brd) 050641 Spring Creek (79 brd) 050642 Spring Creek (79 brd) 054101 Spring Creek (76 brd) 054201 Spring Creek (76 brd) 054401 Spring Creek (76 brd) 054501 Spring Creek (76 brd) 054501 Spring Creek (76 brd) 054501 Spring Creek (76 brd) 055501 Spring Creek (77 brd) 055601 Spring Creek (77 brd) 055701 Spring Creek (77 brd) 056001 Spring Creek (77 brd) 056001 Spring Creek (77 brd)
MALIDATION CHE COOLDO	050201 Spring Creek (77 brd)
VALIDATION CWT GROUPS	
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀)) where t= (Age-1)*12</pre>	Mean $FL_{mixmature} = 970.8*(1-e^{**}(-0.038(t-2.60)))$ where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09 Mean $FL_{mature} = 912.9*(1-e^{**}(-0.064(t-3.97)))$ where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=40367
SCALE DATA ORIGIN: SUPPLEMENTAL DATA SOURCES:	Columbia River Net, Sport, Escapement Columbia River Fish Runs and Fisheries Status Report

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	45. Columbia Upriver Summer (Upp CR Su)
MANAGEMENT UNITS REPRESENTED:	Natural summer chinook from mainstem and tributaries upstream of Priest Rapids Dam.
	Hatchery summer chinook from Wells Dam Hatchery, Rocky Reach Hatchery, and Eastbank Hatchery, Methow Hatchery, and Similkameen Rearing Pond supplementation facilities.
CALIBRATION CWT GROUPS:	631607 Wells Dam Sp Channel (76 brd) 631642 Wells Dam Sp Channel (76 brd) 631762 Wells Dam Sp Channel (77 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =3412.3*(1-e**(-0.006(t-1.57)) where Age 2 CV = 0.11
Mean Fork Length(mm) = $L_{max}*(1-e**(-k(t-t_0)))$	Age 3 $CV = 0.12$ Age 4 $CV = 0.09$ Age 5 $CV = 0.09$
where t= (Age-1)*12 + midpt. of time step	Mean FL _{mature} =1294.1*(1-e**(-0.013(t+10.29)) where Age 2 CV = 0.11 Age 3 CV = 0.11
(from No. Lewis R wild fingerling CWT groups)	Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=22205
SCALE DATA ORIGIN: SUPPLEMENTAL DATA SOURCES:	No data Columbia River Fish Runs and Fisheries
	Status Report

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	47. Columbia Upriver Bright (Col R Brt)
MANAGEMENT UNITS REPRESENTED:	Natural fall chinook from Deschutes River, brights in Klickitat, White Salmon, and Wind rivers and Columbia main stem and tributaries upstream of McNary Dam, excluding Snake River.
	Hatchery bright fall chinook at Priest Rapids Hatchery (URB), Mid-Columbia Brights (MCB) at Ringold Rearing Pond, Irrigon Hatchery, Umatilla Hatchery and Bonneville Pool brights (BUB) at Bonneville Hatchery, Klickitat Hatchery, and Little White Salmon NFH.
CALIBRATION CWT GROUPS:	130713 Ringold Rearing Pond (75 brd) 131101 Priest Rapids (75 brd) 131202 Priest Rapids (75 brd) 631662 Priest Rapids (76 brd) 631741 Priest Rapids (77 brd) 631745 Ringold Rearing Pond (77 brd)
VALIDATION CWT GROUPS	
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀)) where t= (Age-1)*12</pre>	Mean $FL_{mixmature} = 1313.5*(1-e^{**}(-0.023(t-3.17)))$ where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09 Mean $FL_{mature} = 1069.4*(1-e^{**}(-0.023(t+4.86)))$ where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=51025
SCALE DATA ORIGIN:	Columbia net, sport and escapement
SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries Status Report

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	49. Washington lower river spring (WaLR Sprg)
MANAGEMENT UNITS REPRESENTED:	Natural spring chinook from Cowlitz, Kalama, and Lewis rivers.
	Hatchery spring chinook at Cowlitz, Kalama Falls, Lower Kalama, Lewis River, and Speelyai hatcheries.
CALIBRATION CWT GROUPS:	631817 Cowlitz (77 brd) 631818 Cowlitz (77 brd)
VALIDATION CWT GROUPS	
<pre>Von Bertalanffy Growth Function Mean Fork Length(mm)= Lmax*(1-e**(-k(t-t₀)) where t= (Age-1)*12 + midpt. of time step</pre>	<pre>Mean FL_{mixmature} =994.6*(1-e**(-0.046(t-11.36)) where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09 Mean FL_{mature} =922.0*(1-e**(-0.069(t-16.52))</pre>
	where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=23720
SCALE DATA ORIGIN: SUPPLEMENTAL DATA SOURCES:	Columbia net, sport and escapement Columbia River Fish Runs and Fisheries Status Report

SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries
FRAM UNMARKED STOCK	Status Report 51. Willamette River spring (Will Sprg)
NUMBER/NAME/ABBREVIATION:	SI. WIIIamette River spring (WIII sprg)
MANAGEMENT UNITS REPRESENTED:	Natural spring chinook from Willamette and Sandy rivers.
	Hatchery spring chinook at Marion Forks, Mckenzie, Willamette/Dexter Pond, S. Santiam, and Clackamas H.
CALIBRATION CWT GROUPS:	071737 Dexter Pond (77 brd) 071738 Willamette (77 brd) 071741 Dexter Pond (77 brd) 071742 Dexter Pond (77 brd) 071925 Willamette (78 brd) 072042 Willamette (78 brd) 072047 Willamette (78 brd) 072049 McKenzie (78 brd) 072050 McKenzie (78 brd) 091621 So. Santiam (76 brd) 091622 So. Santiam (76 brd) 091623 So. Santiam (76 brd) 091624 So. Santiam (76 brd) 091625 So. Santiam (76 brd) 091625 So. Santiam (76 brd) 091627 So. Santiam (76 brd) 091628 So. Santiam (76 brd) 091629 So. Santiam (76 brd) 091629 So. Santiam (76 brd) 091630 So. Santiam (76 brd) 091631 So. Santiam (76 brd) 091701 Marion Forks (76 brd) 091703 Marion Forks (76 brd)
VALIDATION CWT GROUPS	OPINOS MATION POINS (70 DIG)
VALIDATION CWI GROOPS Von Bertalanffy Growth Function Mean Fork Length(mm)= L _{max} *(1-e**(-k(t-t ₀)) where t= (Age-1)*12 + midpt. of time step	Mean $FL_{mixmature} = 994.6*(1-e^{**}(-0.046(t-11.36)))$ where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09 Mean $FL_{mature} = 922.0*(1-e^{**}(-0.069(t-16.52)))$ where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement Columbia River Net Columbia River and tributary sport
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=37928
SCALE DATA ORIGIN:	Columbia net, sport and escapement

FRAM UNMARKED STOCK	53. Snake River fall chinook (SnakeR
NUMBER/NAME/ABBREVIATION:	Fl)
MANAGEMENT UNITS REPRESENTED:	Natural fall chinook from Snake River
	and tributaries.
	Hatchery fall chinook at Lyons Ferry
	and Nez Perce Tribal hatcheries.
CALIBRATION CWT GROUPS:	633226 Lyons Ferry (84 brd)
	633227 Lyons Ferry (84 brd)
	633228 Lyons Ferry (84 brd)
	633633 Lyons Ferry (85 brd)
	633634 Lyons Ferry (85 brd)
	633635 Lyons Ferry (85 brd)
	633636 Lyons Ferry (85 brd)
	633637 Lyons Ferry (85 brd)
	633638 Lyons Ferry (85 brd)
	633639 Lyons Ferry (85 brd)
	633640 Lyons Ferry (85 brd)
	633641 Lyons Ferry (85 brd)
	633642 Lyons Ferry (85 brd)
	634259 Lyons Ferry (86 brd)
	634261 Lyons Ferry (86 brd)
	634262 Lyons Ferry (86 brd)
	634401 Lyons Ferry (86 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =1313.5*(1-e**(-0.023(t-3.17))
	where Age 2 $CV = 0.11$
Mean Fork Length(mm) =	Age 3 $CV = 0.12$
$L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$
where $t = (Age - 1) * 12$	Age 5 CV = 0.09
+ midpt. of time step	Mean $FL_{mature} = 1069.4*(1-e**(-0.023(t+4.86)))$
	where Age 2 $CV = 0.11$
	Age 3 CV = 0.11
	Age 4 CV = 0.11
	Age 5 CV = 0.11
	Natural and hatchery escapement
ACCOUNTED IN TERMINAL RUN (TR)	Columbia River Net
(or Terminal Area Abundance	Columbia River and tributary sport
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME TERMINAL	Same as TR
RUN SIZE (ETRS):	Base Period Escapement=1000
SCALE DATA ORIGIN:	Columbia net, sport and escapement
SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries
	Status Report
	Searcas Report

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	F1)
MANAGEMENT UNITS REPRESENTED:	Natural fall chinook from Oregon north
	coastal tributaries.
	Hatchery fall chinook at Salmon River
	-
	Hatchery.
CALIBRATION CWT GROUPS:	071643 Salmon River (77 brd)
	071644 Salmon River (77 brd)
	071849 Salmon River (78 brd)
	071850 Salmon River (78 brd)
	091637 Salmon River (76 brd)
	091638 Salmon River (76 brd)
VALIDATION CWT GROUPS	091050 Balmon Kivel (70 bld)
Von Bertalanffy Growth Function	Mean FL _{mixmature} =1313.5*(1-e**(-0.023(t-3.17))
	where Age 2 CV = 0.11
Mean Fork Length(mm) =	Age 3 $CV = 0.12$
L_{max} *(1-e**(-k(t-t ₀))	Age 4 $CV = 0.09$
	Age 5 CV = 0.09
where t= (Age-1)*12 + midpt. of time step	$M_{0,0,0} = -1060 (4 + (1 + 4 + (0 + 1)))$
+ midpt. of time step	Mean $FL_{mature} = 1069.4*(1-e^{*}(-0.023(t+4.86)))$
	where Age 2 $CV = 0.11$
	Age 3 $CV = 0.11$
	Age 4 $CV = 0.11$
	Age 5 CV = 0.11
	Natural and betshows assessment
ACCOUNTED IN TERMINAL RUN (TR)	Natural and hatchery escapement
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
(IAA) III FUYEE DOULDA).	Same as TR
ACCOUNTED IN EXTREME TERMINAL	
RUN SIZE (ETRS):	Base Period Escapement=41074
SCALE DATA ORIGIN:	??
SUPPLEMENTAL DATA SOURCES:	
SOLLIPINENIAL DAIA SOOKCES.	

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	57. West coast Vancouver Island (WCVI Totl)
	,
MANAGEMENT UNITS REPRESENTED:	Natural chinook from west coast
	Vancouver Island.
	Hatchery chinook at Robertson Creek
	Hatchery.
CALIBRATION CWT GROUPS:	020408 Robertson Creek (75 brd)
	020409 Robertson Creek (75 brd)
	020606 Robertson Creek (74 brd)
	020906 Robertson Creek (74 brd)
	021630 Robertson Creek (76 brd)
	021631 Robertson Creek (76 brd)
	022217 Robertson Creek (77 brd)
	022218 Robertson Creek (77 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 1313.5*(1-e**(-0.023(t-3.17)))$
	where Age 2 $CV = 0.11$
Mean Fork Length(mm) =	Age 3 $CV = 0.12$
L_{max} *(1-e**(-k(t-t ₀))	Age 4 $CV = 0.09$ Age 5 $CV = 0.09$
where $t = (Age - 1) * 12$	Age 5 CV = 0.09
+ midpt. of time step	Mean $FL_{mature} = 1069.4*(1-e**(-0.023(t+4.86)))$
	where Age 2 $CV = 0.11$
	Age 3 CV = 0.11
	Age 4 CV = 0.11
	Age 5 CV = 0.11
	Natural and hatchery escapement
ACCOUNTED IN TERMINAL RUN (TR)	Fraser River net
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME TERMINAL	Same as TR
RUN SIZE (ETRS):	Base Period Escapement=123406
SCALE DATA ORIGIN:	<u>\$</u> \$
SUPPLEMENTAL DATA SOURCES:	••
POLLENING TALA DATA DOUCED.	

	59. Fraser Late (Fraser Lt)
NUMBER/NAME/ABBREVIATION:	
MANAGEMENT UNITS REPRESENTED:	Natural and hatchery fall chinook from
	lower Fraser River
CALIBRATION CWT GROUPS:	022658 Chilliwack (83 brd)
	022659 Chilliwack (83 brd)
	022660 Chilliwack (83 brd)
	023414 Chilliwack (84 brd)
	023415 Chilliwack (84 brd)
	023416 Chilliwack (84 brd)
	023417 Chilliwack (84 brd)
	023418 Chilliwack (84 brd)
	023419 Chilliwack (84 brd)
VALIDATION CWT GROUPS	
VALIDATION CWI GROOFS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83))
Von Bertalanity Growth Function	where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 $CV = 0.12$
$L_{max}^{*}(1-e^{**}(-k(t-t_0)))$	Age 4 $CV = 0.09$
$\square_{\max} (I - e (-K(e - e_0)))$	Age 5 $CV = 0.09$
where t= $(Age-1)*12$	Age 5 ev = 0.05
+ midpt. of time step	Mean FL _{mature} =1085.2*(1-e**(-0.030(t-1.59))
	where Age 2 CV = 0.11
	Age 3 $CV = 0.11$
	Age 4 $CV = 0.11$
	Age 5 $CV = 0.11$
	Natural and hatchery escapement
ACCOUNTED IN TERMINAL RUN (TR)	Fraser River net
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
	Same as TR
ACCOUNTED IN EXTREME TERMINAL	Base Period Escapement=120000
RUN SIZE (ETRS):	_
SCALE DATA ORIGIN:	??

FRAM NUMBER/NAMI	UNMARKED E/ABBREVIATION:	STOCK	61. Fraser Early (Fraser Er)
MANAGEMENT	UNITS REPRESENTI	ED:	Natural and hatchery fall chinook from upper Fraser River
CALIBRATIO	N CWT GROUPS:		021601 Shuswap Wild (79 brd) 021602 Chilko Wild (78 brd) 021625 Shuswap Wild (78 brd)

	021638 Shuswap Wild (78 brd)
	021658 chilko Wild (78 brd)
	021755 Shuswap Wild (79 brd)
	024247 Clearwater (86 brd)
	024248 Clearwater (86 brd)
	024249 Clearwater (86 brd)
	024250 Clearwater (86 brd)
	024316 Shuswap (86 brd)
	024521 Clearwater (86 brd)
	024522 Clearwater (86 brd)
	024523 Clearwater (86 brd)
	024524 Clearwater (86 brd)
	024525 Clearwater (86 brd)
	024526 Clearwater (86 brd)
	024527 Clearwater (86 brd)
	024528 Spius (86 brd)
	024529 Spius (86 brd)
	024530 Spius (86 brd)
	024531 Spius (86 brd)
	024532 Spius (86 brd)
	024533 Spius (86 brd)
	024534 Shuswap (86 brd)
	024535 Shuswap (86 brd)
	024536 Clearwater (86 brd)
	024537 Clearwater (86 brd)
	024538 Clearwater (86 brd)
	024562 Spius (86 brd)
	024563 Spius (86 brd)
	024601 Spius (86 brd)
	024607 Spius (86 brd)
	024510 Shuswap (86 brd)
	024705 Spius (86 brd)
	024706 Spius (86 brd)
	021717 Fort St James (86 brd)
VALIDATION CWT GROUPS	х <i>г</i>

Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 1080.3*(1-e**(-0.032(t-3.00)))$
	where Age 2 CV = 0.16
Mean Fork Length(mm)=	Age 3 CV = 0.08
$L_{max}^{*}(1-e^{*}(-k(t-t_{0})))$	Age 4 CV = 0.13
	Age 5 CV = 0.16
where $t = (Age-1)*12$	
+ midpt. of time step	Mean $FL_{mature} = 1080.3*(1-e^{*}(-0.032(t-3.00)))$
	where Age 2 CV = 0.16
	Age 3 $CV = 0.08$
	Age 4 CV = 0.13
	Age 5 CV = 0.16
	Natural and hatchery escapement
ACCOUNTED IN TERMINAL RUN	Fraser River net
	Fraser River net
	Same as TR
ACCOUNTED IN EXTREME TERMINAL	Base Period Escapement=43631
RUN SIZE (ETRS):	babe reriou ibeapement-49091
SCALE DATA ORIGIN:	??
SUPPLEMENTAL DATA SOURCES:	

FRAM UNMARKED STOCK 63. Lower Georgia Strait fall (Lw: NUMBER/NAME/ABBREVIATION: St) MANAGEMENT UNITS REPRESENTED: Natural and hatchery fall chinook Georgia Strait tributaries CALIBRATION CWT GROUPS: 021612 Big Qualicum (78 brd) 021613 Big Qualicum (78 brd)	
Georgia Strait tributariesCALIBRATION CWT GROUPS:021612 Big Qualicum (78 brd) 021613 Big Qualicum (78 brd)	from
CALIBRATION CWT GROUPS: 021612 Big Qualicum (78 brd) 021613 Big Qualicum (78 brd)	
021613 Big Qualicum (78 brd)	
021613 Big Qualicum (78 brd)	
021639 Capilano (77 brd)	
021642 Capilano (77 brd)	
021656 Big Qualicum (78 brd)	
021726 Big Qualicum (77 brd)	
021727 Big Qualicum (77 brd)	
VALIDATION CWT GROUPS	
Von Bertalanffy Growth FunctionMean FL= 1445.7*(1-e**(-0.020(t-1	.25))
where Age 2 CV = 0.21	
Mean Fork Length(mm) = Age 3 CV = 0.10 $L_{max}^{*}(1-e^{**}(-k(t-t_0)))$ Age 4 CV = 0.08	
Age 5 CV = 0.04	
where $t = (Age-1)*12$	
+ midpt. of time step Mean FL _{mature} =1445.7*(1-e**(-0.020(t-1.2	5))
where Age 2 $CV = 0.21$	
Age 3 $CV = 0.10$ Age 4 $CV = 0.08$	
Age $4 \text{ CV} = 0.08$ Age $5 \text{ CV} = 0.04$	
Natural and hatchery escapement	
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance Freshwater net	
·	
(TAA) in Puget Sound):	
I ACCOUNTED IN EXTREME TERMINAL I Same as In	
RUN SIZE (ETRS): Base Period Escapement=16947	
SCALE DATA ORIGIN: ??	
SUPPLEMENTAL DATA SOURCES:	

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:	65. White River spring yearling (White SpYr)
MANAGEMENT UNITS REPRESENTED:	South Puget Sound spring yearling
CALIBRATION CWT GROUPS:	212263 White River Hatchery (91 brd) 212048 White River Hatchery (92 brd) 212509 White River Hatchery (93 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function Mean Fork Length(mm)= L _{max} *(1-e**(-k(t-t ₀))	Mean FL _{mixmature} =904.0*(1-e**(-0.043(t-9.54)) where Age 2 CV = 0.17 Age 3 CV = 0.14 Age 4 CV = 0.10 Age 5 CV = 0.10
where t= (Age-1)*12 + midpt. of time step	Mean FL _{mature} =938.6*(1-e**(-0.048(t-11.31)) where Age 2 CV = 0.048
	$\begin{array}{r} \text{Age 2 CV} = 0.043 \\ \text{Age 3 CV} = 0.11 \\ \text{Age 4 CV} = 0.11 \\ \text{Age 5 CV} = 0.11 \end{array}$
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Natural and hatchery escapement to White River Hatchery or Buckley Trap Freshwater net
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=100
SCALE DATA ORIGIN:	??
SUPPLEMENTAL DATA SOURCES:	

FRAM UNMARKED STOCK	67. Lower Columbia Natural Tule
NUMBER/NAME/ABBREVIATION:	(LwrColN)
MANAGEMENT UNITS REPRESENTED:	Natural tule fall chinook from Oregon
	and Washington tribs below Bonneville
	Dam
CALIBRATION CWT GROUPS:	631802 Cowlitz Salmon Hatchery (77 brd)
	631942 Cowlitz Salmon Hatchery (78 brd)
	632154 Cowlitz Salmon Hatchery (79 brd)
	071704 Big Creek Hatchery (77 brd)
	071705 Big Creek Hatchery (77 brd)
	071844 Big Creek Hatchery (78 brd)
	072160 Tanner Creek Hatchery (79 brd)
	631746 Kalama Falls Hatchery (77 brd)
	631747 Kalama Falls Hatchery (77 brd)
	631957 Kalama Falls Hatchery (78 brd)
	632105 Kalama Falls Hatchery (79 brd)
	631803 Washougal Hatchery (77 brd)
	631938 Washougal Hatchery (78 brd)
	631946 Washougal Hatchery (78 brd)
	632153 Washougal Hatchery (79 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean $FL_{mixmature} = 1182.9*(1-e**(-0.024(t-3.41)))$
Moon Foult I on ath (mm) -	where Age 2 CV = 0.11 Age 3 CV = 0.12
Mean Fork Length(mm)= $L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$
	Age 5 CV = 0.09
where $t = (Age-1)*12$	
+ midpt. of time step	Mean $FL_{mature} = 1122.5*(1-e**(-0.020(t+5.80)))$
	where Age 2 CV = 0.11
	Age 3 CV = 0.11 Age 4 CV = 0.11
(from Cowlitz H CWT groups)	Age 5 $CV = 0.11$
ACCOUNTED IN TERMINAL RUN	Natural escapement
(TR)	Columbia River net
(or Terminal Area Abundance	Columbia River and tributary sport
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME	Same as TR
TERMINAL	Base Period Escapement=5650
RUN SIZE (ETRS):	
SCALE DATA ORIGIN:	Columbia River Net, Sport, Escapement
SUPPLEMENTAL DATA SOURCES:	Columbia River Fish Runs and Fisheries
SOLLIPHININI DAIA SOOKCES.	Status Report
	BLALUS REPOIL

FRAM UNMARKED STOCK	69. Central Valley/Sacramento R Chinook
NUMBER/NAME/ABBREVIATION:	(CtrVal)
MANAGEMENT UNITS REPRESENTED:	Hatchery and natural fall chinook from Sacramento River
CALIBRATION CWT GROUPS:	0501021007-115 Coleman NFH (98 brd) 0501021201-02 Coleman NFH (98 brd) 0501021313-15 Coleman NFH (99 brd) 0501021401-415 Coleman NFH (99 brd) 0501021501-509 Coleman NFH (99 brd) 052324-27 Feather River (98 brd) 052414-17 Feather River (98 brd) 062631-38 Feather River (98 brd) 062657-60 Feather River (99 brd) 053829-30 Feather River (99 brd) 062649-56 Feather River (99 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =1182.9*(1-e**(-0.024(t-3.41)) where Age 2 CV = 0.11
<pre>Mean Fork Length(mm)= L_{max}*(1-e**(-k(t-t₀))) where t= (Age-1)*12</pre>	Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09
+ midpt. of time step (from Cowlitz H CWT groups)	<pre>Mean FL_{mature} =1122.5*(1-e**(-0.020(t+5.80)) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11</pre>
ACCOUNTED IN TERMINAL RUN (TR) (or Terminal Area Abundance (TAA) in Puget Sound):	Hatchery and natural escapement
ACCOUNTED IN EXTREME TERMINAL RUN SIZE (ETRS):	Same as TR Base Period Escapement=172400
SCALE DATA ORIGIN:	none
SUPPLEMENTAL DATA SOURCES:	PFMC Review Document

FRAM UNMARKED STOCK NUMBER/NAME/ABBREVIATION:71. Washington North Coast (Wa N CstMANAGEMENT UNITS REPRESENTED:Hatchery and natural fall Chinook from Washington tribs north of Grays HarborCALIBRATION CWT GROUPS:050337 Quinault NFH (77 brd) 050338 Quinault NFH (78 brd) 050518 Quinault NFH (78 brd) 050519 Quinault NFH (78 brd) 050519 Quinault NFH (78 brd)VALIDATION CWT GROUPSMean FLmixmature =1182.9*(1-e**(-0.024(t-3.41 where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09 Age 5 CV = 0.09where t= (Age-1)*12 + midpt. of time stepMean FLmature =1122.5*(1-e**(-0.020(t+5.80))) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11 Age 5 CV = 0.11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	om
CALIBRATION CWT GROUPS: 050337 Quinault NFH (77 brd) 050338 Quinault NFH (78 brd) 050518 Quinault NFH (78 brd) 050519 Quinault NFH (78 brd) VALIDATION CWT GROUPS Von Bertalanffy Growth Function Mean Fork Length(mm)= Lmax*(1-e**(-k(t-t_0))) where Age 2 CV = 0.11 Age 4 CV = 0.09 Age 5 CV = 0.09 where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 4 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11 Age 5 CV = 0.11	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
050519 Quinault NFH (78 brd)VALIDATION CWT GROUPSVon Bertalanffy Growth Function Mean Fork Length(mm)= $L_{max}*(1-e^{**}(-k(t-t_0)))$ Mean FLmixmature =1182.9*(1-e^{**}(-0.024(t-3.41 where Age 2 CV = 0.11 Age 3 CV = 0.12 Age 4 CV = 0.09 Age 5 CV = 0.09where t= (Age-1)*12 + midpt. of time stepMean FLmature =1122.5*(1-e^{**}(-0.020(t+5.80))) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11(from Cowlitz H CWT groups)Age 5 CV = 0.11 Age 5 CV = 0.11	
VALIDATION CWT GROUPSVon Bertalanffy Growth FunctionMean $FL_{mixmature} = 1182.9*(1-e**(-0.024(t-3.41)))$ Mean Fork Length(mm) = $L_{max}*(1-e**(-k(t-t_0)))$ Mean $FL_{max} = 3 \text{ CV} = 0.11$ Mean Fork Length(mm) = $L_{max}*(1-e**(-k(t-t_0)))$ Age 3 CV = 0.12Mean FL $max^*(1-e^{**}(-k(t-t_0)))$ Age 4 CV = 0.09Where t = (Age-1)*12 $+ \text{ midpt. of time step}$ Mean $FL_{mature} = 1122.5*(1-e^{**}(-0.020(t+5.80)))$ Mean FL $mature = 3 \text{ CV} = 0.11$ Age 3 CV = 0.11Age 4 CV = 0.11 Age 5 CV = 0.11Age 5 CV = 0.11Age 5 CV = 0.11 Age 5 CV = 0.11Age 5 CV = 0.11	
Von Bertalanffy Growth FunctionMean FLmixmature=1182.9*(1-e**(-0.024(t-3.41))Mean Fork Length(mm) =Age 3 CV = 0.11 $L_{max}*(1-e**(-k(t-t_0)))$ Age 4 CV = 0.09where t= (Age-1)*12Age 5 CV = 0.09 $+$ midpt. of time stepMean FLmature =1122.5*(1-e**(-0.020(t+5.80)))where Age 2 CV = 0.11Age 3 CV = 0.11 $Age 3 CV = 0.11$ Age 3 CV = 0.11 $Age 4 CV = 0.11$ Age 3 CV = 0.11 $Age 4 CV = 0.11$ Age 3 CV = 0.11 $Age 5 CV = 0.11$ Age 5 CV = 0.11 $Age 5 CV = 0.11$ Age 5 CV = 0.11 $Age 5 CV = 0.11$ Age 5 CV = 0.11 $Age 5 CV = 0.11$ Age 5 CV = 0.11	
$ \begin{array}{c} \mbox{Where Age 2 CV = 0.11} \\ \mbox{Mean Fork Length(mm)=} \\ \mbox{L}_{max}*(1-e^{**}(-k(t-t_0))) \\ \mbox{where t= (Age-1)*12} \\ \mbox{ + midpt. of time step} \end{array} \\ \mbox{Wean FL}_{mature} = 1122.5*(1-e^{**}(-0.020(t+5.80))) \\ \mbox{where Age 2 CV = 0.11} \\ \mbox{Age 3 CV = 0.11} \\ \mbox{Age 3 CV = 0.11} \\ \mbox{Age 4 CV = 0.11} \\ \mbox{Age 5 CV = 0.11} \\ $	
$ \begin{array}{c} \mbox{Mean Fork Length(mm)} = & \mbox{Age 3 CV} = 0.12 \\ \mbox{L}_{max} * (1 - e^{**} (-k(t - t_0))) & \mbox{Age 4 CV} = 0.09 \\ \mbox{where t} = (Age - 1)^{*}12 & \mbox{Age 5 CV} = 0.09 \\ \mbox{where t} + \mbox{midpt. of time step} & \mbox{Mean FL}_{mature} = 1122.5*(1 - e^{**} (-0.020(t + 5.80))) \\ \mbox{where Age 2 CV} = 0.11 \\ \mbox{Age 3 CV} = 0.11 \\ \mbox{Age 4 CV} = 0.11 \\ \mbox{Age 5 CV} = 0.11 \\ $))
$ \begin{array}{c} L_{max}^{+}(1-e^{**}(-k(t-t_{0})) \\ \text{where t= } (Age-1)^{*}12 \\ + \text{ midpt. of time step} \end{array} \\ \begin{array}{c} Age \ 4 \ CV = \ 0.09 \\ Age \ 5 \ CV = \ 0.09 \\ \text{Mean FL}_{mature} = 1122.5^{*}(1-e^{**}(-0.020(t+5.80))) \\ \text{where } Age \ 2 \ CV = \ 0.11 \\ Age \ 3 \ CV = \ 0.11 \\ Age \ 4 \ CV = \ 0.11 \\ Age \ 4 \ CV = \ 0.11 \\ Age \ 5 \ CV = \ 0.11 \\ Age \ 5 \ CV = \ 0.11 \\ Age \ 5 \ CV = \ 0.11 \\ \end{array} $	
$\begin{array}{c} \text{Age 5 CV} = 0.09 \\ \text{where t} = (Age-1)*12 \\ + \text{ midpt. of time step} \\ \text{(from Cowlitz H CWT groups)} \end{array} \qquad \begin{array}{c} \text{Mean FL}_{\text{mature}} = 1122.5*(1-e^{**}(-0.020(t+5.80))) \\ \text{where Age 2 CV} = 0.11 \\ \text{Age 3 CV} = 0.11 \\ \text{Age 4 CV} = 0.11 \\ \text{Age 5 CV} = 0.11 \end{array}$	
<pre>where t= (Age-1)*12 + midpt. of time step + midpt. of time step (from Cowlitz H CWT groups) Mean FL_{mature} =1122.5*(1-e**(-0.020(t+5.80)) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11 </pre>	
(from Cowlitz H CWT groups) (from Cowlitz H CWT groups) where Age 2 CV = 0.11 Age 3 CV = 0.11 Age 4 CV = 0.11	
(from Cowlitz H CWT groups) Age 3 CV = 0.11 Age 4 CV = 0.11 Age 5 CV = 0.11	
(from Cowlitz H CWT groups) Age 4 CV = 0.11 Age 5 CV = 0.11	
(from Cowlitz H CWT groups) Age 5 CV = 0.11	
Hatchery and Natural escapement	
ACCOUNTED IN TERMINAL RUN	
(TR)	
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME Same as TR	
TERMINAL Base Period Escapement=24300	
RUN SIZE (ETRS):	
SUPPLEMENTAL DATA SOURCES: CTC Model base period data	

FRAM UNMARKED STOCK	73. Willapa (Wilpa)
NUMBER/NAME/ABBREVIATION:	
MANAGEMENT UNITS REPRESENTED:	Hatchery and natural fall chinook from
	Willap Bay tribs
CALIBRATION CWT GROUPS:	633120-21 Forks Creek Hatchery (83 brd)
	633239-41 Forks Creek Hatchery (84 brd)
	633815-18 Forks Creek Hatchery (85 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =1182.9*(1-e**(-0.024(t-3.41))
	where Age 2 CV = 0.11
Mean Fork Length(mm)=	Age 3 CV = 0.12
$L_{max}^{*}(1-e^{*}(-k(t-t_{0})))$	Age 4 $CV = 0.09$
	Age 5 CV = 0.09
where $t = (Age - 1) * 12$	
+ midpt. of time step	Mean $FL_{mature} = 1122.5*(1-e**(-0.020(t+5.80)))$
	where Age 2 $CV = 0.11$
	Age 3 CV = 0.11
	Age $4 \text{CV} = 0.11$
(from Cowlitz H CWT groups)	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN	Hatchery and natural escapement
(TR)	
(or Terminal Area Abundance	
(TAA) in Puget Sound):	
ACCOUNTED IN EXTREME	Same as TR
TERMINAL	Base Period Escapement=7000
RUN SIZE (ETRS):	
SCALE DATA ORIGIN:	none
SUPPLEMENTAL DATA SOURCES:	PFMC Review Document
	1

FRAM UNMARKED STOCK	75. Hoko fall Chinook
NUMBER/NAME/ABBREVIATION:	(Hoko)
	(HOKO)
MANAGEMENT UNITS REPRESENTED:	Hathery and natural Chinook
CALIBRATION CWT GROUPS:	211935 Hoko Falls Hatchery (85 brd)
	212216 Hoko Falls Hatchery (86 brd)
	211907 Hoko Falls Hatchery (87 brd)
VALIDATION CWT GROUPS	
Von Bertalanffy Growth Function	Mean FL _{mixmature} =982.1*(1-e**(-0.029(t-2.83))
	where Age 2 CV = 0.11
Mean Fork Length(mm)=	Aqe 3 CV = 0.12
$L_{max}*(1-e**(-k(t-t_0)))$	Age 4 $CV = 0.09$
	Age 5 CV = 0.09
where $t = (Age - 1) * 12$	1190 5 00 - 0.05
+ midpt. of time step	Mean FL _{mature} =1085.2*(1-e**(-0.030(t-1.59))
	where Age 2 CV = 0.03
	-
	Age 3 CV = 0.11
(from generalized PS summer/fall	-
fingerling CWT groups)	Age 5 CV = 0.11
ACCOUNTED IN TERMINAL RUN (TR)	
(or Terminal Area Abundance	Natural and hatchery escapement
(TAA) in Puget Sound):	Freshwater net
(IIII) III lugee bound)	
ACCOUNTED IN EXTREME TERMINAL	Natural and hatchery escapement
RUN SIZE (ETRS):	Freshwater net
	Base Period Escapement=500
SCALE DATA ORIGIN:	
DEALE DATA ONIGIN.	
SUPPLEMENTAL DATA SOURCES:	

FRAM Fsh Num	Chinook FRAM Fishery Name	Base Catch
1	SEAK Troll	283,260
2	SEAK Net	25,117
3	SEAK Sport	20,472
4	N/C BC Net	115,266
5	WCVI Net	57,783
6	GS Net	88,793
7	Canada JDF Net	25,432
8	Outside BC Sport	15,448
9	N/C BC Troll	321,046
10	WCVI Troll	467,376
11	WCVI Sport	0
12	GS Troll	214,175
13	No GS Sport	104,633
14	So GS Sport	125,934
15	BC JDF Sport	52,729
16	NT Area 3:4:4B Troll	41,789
17	T Area 3:4:4B Troll	20,454
18	NT Area 3:4 Sport	3,954
19	N Wash. Coastal Net	423
20	NT Area 2 Troll	59,869
21	T Area 2 Troll	713
22	NT Area 2 Sport	55,902
23	NT G. Harbor Net	2,387
24	T G. Harbor Net	699
25	Willapa Bay Net	13,836
26	Area 1 Troll	20,435
27	Area 1 Sport	30,099
28	Columbia River Net	67,919
29	Buoy 10 Sport	0
30	Central OR Troll	109,061
31	Central OR Sport	8,796
32	KMZ Troll	261,101
33	KMZ Sport	22,158
34	S. Calif. Troll	424,672
35	S. Calif. Sport	89,045

4.4 Fishery and Stock List

36	NT Area 7 Sport	13,423
37	NT Area 6A:7:7A Net	34,303
38	T Area 6A:7:7A Net	12,190
39	NT Area 7B-7D Net	25,449
40	T Area 7B-7D Net	39,075
41	T JDF Troll	600
42	NT Area 5-6 Sport	54,503
43	NT JDF Net	5,152
44	T JDF Net	14,807
45	NT Area 8 1-2 Sport	11,161
46	NT Skagit Net	1,455
47	T Skagit Net	1,711
48	NT Area 8D Sport	1
49	NT St/Snohomish Net	1,402
50	T St/Snohomish Net	16,423
51	NT Tulalip Bay Net	1
52	T Tulalip Bay Net	483
53	NT Area 9 Sport	29,586
54	NT Area 6B:9 Net	1,648
55	T Area 6B:9 Net	533
56	NT Area 10 Sport	21,309
57	NT Area 11 Sport	28,258
58	NT Area 10:11 Net	6,151
59	T Area 10:11 Net	4,955
60	NT Area 10A Sport	1
61	T Area 10A Net	5,880
62	NT Area 10E Net	1
63	T Area 10E Net	399
64	NT Area 12 Sport	7,550
65	NT Hood Canal Net	1,228
66	T Hood Canal Net	4,859
67	NT Area 13 Sport	22,997
68	NT SPS Net	1
69	T SPS Net	4,650
70	NT Area 13A Net	1
71	T Area 13A Net	5,084
72	Freshwater Sport	NA
73	Freshwater Net	NA

			Data Cauraa	Dees
Model Stock	Model Years	Escapement Timing	Data Source Escapement Magnitude	Base Esc
Nk/Sam Fall Fingerling	77,79	July - Sept	PS Run Reconstruction	20,224
NF Nooksack Spring	OOB 84,88 NF	July - Sept	OOB	500
SF Nooksack Spring	OOB 84,88 NF	July - Sept	OOB	500
Skag Su/Fall Fing	76,77	July - Sept	PS Run Reconstruction	10,443
Skag Su/Fall Year	76	July - Sept	PS Run Reconstruction	2,105
Skagit Spring Year	OOB 85-87,90	May-June, July - Sept	OOB	1,391
Snoh Fall Fing	OOB 86-88	July - Sept	OOB	4,814
Snoh Fall Year	76	July - Sept	not adjusted	3,352
Stil Fall Fing	OOB 86-90	July - Sept	OOB	831
Tulalip Fall Fing	OOB 86-88	July - Sept	OOB	1
Mid PS Fall Fing	78,79	July - Sept	PS Run Reconstruction	20,018
UW Accelerated	77-79	July - Sept	PS Run Reconstruction	1,062
SPS Fall Fing	78,79	July - Sept	PS Run Reconstruction	10,230
SPS Fall Year	78,79	July - Sept	not adjusted	330
White R. Spring Fing	OOB 91-93	July - Sept	ACOE Buckly Trap	100
HC Fall Fing	78,79	July - Sept	PS Run Reconstruction	4,078
HC Fall Year	78,79	July - Sept	PS Run Reconstruction	126
JDF Tribs. Fall Fing	78,79,OOB 83-85	July - Sept	PS Run Reconstruction	2,365
OR Hatchery Tule	78,79	July - Sept	CR Run Reconstruction	42,000
WA Hatchery Tule	77,79	July - Sept	CR Run Reconstruction	33,400
Lower Col R Wild	77,78	July - Sept	CR Run Reconstruction	14,192
Bonneville Pool Hatchery	76-79	July - Sept	CR Run Reconstruction	40,365
Col R. Upriver Summer	76,77	May - June (53%), July - Sept (47%)	PSC Chinook Model	22,205
Col R. Upriver Bright	75-77	July - Sept	CR Run Reconstruction	51,025
Cowlitz Spring	77	Oct - April	CR Run Reconstruction	23,720
Willamette Spring	76-78	Oct - April	CR Run Reconstruction	37,928
Snake River Fall	OOB 84-86	July - Sept	OOB	1,000
OR North Fall	76-78	July - Sept	PSC Chinook Model	41,074
WCVI Total	74-77	July - Sept	PSC Chinook Model	123,406
Fraser Late	OOB 83,84	July - Sept	OOB	120,000
Fraser Early	78,79,00B 84,86	July - Sept	PSC Chinook Model	43,631
Lower Georgia Strait	77,78	July - Sept	PSC Chinook Model	16,947
White R. Spring Year	OOB 91-93	July - Sept	ACOE Buckly Trap	10,047

4.5 Functional Description of Calibration Programs and Worksheets

FRAM.exe: Run as base period or as annual 83-06 "validation" runs. Validation runs are made with FRAM base period input file of stock/age specific cohort sizes, exploitation rates, growth functions, fishery related mortality parameters, etc and best estimates of yearly actual stock abundances and reported fishery catches and/or effort scalars.

PSRR.xls: Produces base period terminal run sizes for insertion into Puget Sound stock validation abundance spreadsheets.

Validation Abundance Spreadsheet (Puget Sound, Columbia River, British Columbia): Contains annual terminal run size accounting for various post-season run reconstruction accounting systems, and from these produces age-stock-year specific abundance scalars used in Method 1-3 FRAM starting cohort abundance scalar derivation.

UPDATERECONTXT.exe: Updates input stock text files used by RECON.bas for Method 2 abundance scalar derivation.

RECON.bas: Obtains Method 2 estimates of recruit scale factors for Puget Sound summer/fall stocks by adjusting terminal run based abundance scalars by year-timestep-fishery specific independent effort scalars. These effort scalars are usually derived from comparing within year vessel days, angler-trips, or deliveries to the same measured during the 1979-82 base period.

UPDTMT.bas: Replaces base period maturation rates in the FRAM base period data file ("outfile') with year-specific maturation rates calculated from year-specific CWT groups for eight Puget Sound fall stocks to create annual outfiles.

MRTRAT.bas: Calculates ratio of total mortality to landed catch for Puget Sound summer/fall Chinook. These data are pasted into the RECON text input file and are used in accounting for preterminal fishing impacts in order to derive prefishing age-stock specific abundances.

UPDATE COMMAND SCALARS.exe: Creates new FRAM validation command files with new yearly stock and age specific abundance scalars relative to the base period cohorts.

JMNSZE.bas: Reformats four successive years of FRAM model estimates of annual fishery effort scalars into single brood year files of fishery effort scalars for separate ages 2-5. These brood year specific scale factor files are key part of the process that simulates out-of-base period CWT recoveries back to the base period.

CHDAT.bas: Error checks data and reformats calibration input data for use by other programs.

CHCAL.bas: Has two primary functions: 1) Estimates base period CWT recoveries for out-of-base stocks and brood years; 2) Produces FRAM base period data file containing base period cohort abundances, exploitation rates by stock-age-time, maturation rates, adult equivalency factors, and other model parameters such as natural mortality rates, fishery related mortality rates, etc.

MERGE.bas: Combines OOB CWT recovery simulations for several single brood year tag groups for a stock into single base period CWT recovery list.

MRGFE.bas: Special case for Fraser Early stocks of Merge.bas, which combines OOB simulation CWT groups with base period CWT groups.

BASESTOCKEXP.xls: CWT recovery adjustment spreadsheet for base period terminal net fisheries and escapements.

SFMCHIN.c: converts the final FRAM base period data file ("outfile") produced during calibration to an outfile containing equal numbers of marked and unmarked units of each FRAM stock which sum to the original total.

4.6 Stepwise Calibration Instruction

- 1. Identify CWT groups to represent stocks.
- 2. Retrieve CWT recoveries from coast wide data source PSMFC.
- 3. Compile or map the stock and brood year specific CWT recoveries to FRAM fisheries and time periods by age using program FRAMBUILDER.
- 4. If undergoing major model structure changes to fisheries, stocks, time periods:
 - Update base period landings and escapements.
 - Update terminal run fisheries and escapements with CWT and run reconstruction data in the terminal run spreadsheets for base period stock adjustments.
 - Update validation command files (xxxx.cmd) if warranted.
- 5. Decide where to "start" the calibration. Generally, where you begin calibration depends on the nature of the changes. Major overalls which involve modifications of base period stock, fisheries, structures, or parameters probably will require building of new base period outfile (stkxxxx .out) and base period command file (base.cmd). Minor changes such as updates to OOB stock(s) are best started with a simulation back to the base period for the updated stock(s). Theoretically, the iterative nature of the calibration minimizes the affect of picking a starting point.
- 6. Start a new calibration (or pass) using the final input files, validation spreadsheets, stock adjustment spreadsheets, and base and validation .out files and .cmds from the previous calibration (or pass).
- 7. Run base .cmd and .out in FRAM.
- 8. Estimate Recruit Scale Factors for validation years using terminal run size and escapement data from this run (Figure 3).
- 9. Create New Validation and .cmd and .out Files.
- 10. Run FRAM with new validation command and outfiles to obtain fishery scale factors by fishery year.
- 11. Estimate Exploitation Rate Scale Factors.
- 12. Simulate OOB Stocks.
- 13. Incorporate the new adjusted CWT recoveries from the simulations into the All-Stocks cwt file.
- 14. Create new .out file. Complete the calibration pass by running Chdat and Chcal on the All-Stocks CWT file to create a new .out file.
- 15. Run base.cmd and new .out file and begin the next cycle.

4.7 Sample Calibration Inputs, Outputs and worksheets

Puget Sound recruit scalar and validation spreadsheet: Psvalidxx#.xls

Edit View Insert Format Tools	Data Window	w Help														L
																-
🗧 🔚 🍯 🎒 🗋 🖤 🛛 Times Nev	Roman	- 10 - 👗	lia 🛍	12 🗗 B	IU	% .00 → 00	N + CM +	三 筆 当	tet ▼	🔜 🔜 🔗	- 🕰 - 🚳	Replace	$\Sigma f_{*} \stackrel{A}{\geq} \downarrow \stackrel{Z}{\downarrow} \stackrel{Z}{\downarrow}$ 75%	o 🕘 📿 .	-	
√13																1
	P	6	D	F	F	0	11 1	V	1	M	D.I.	0	P	0		0
	D	- C		E	F	a		N.	L.	191	N.	0	E.	4	2	-
OCK: NOOKSACK-SAMISH FALL FI	CEDING (1)															
UCK: NOUKSACK-SAMISH FALL FIR	IGENLING (1)					-										
	Age 2	Age 3	Age 4	Age 5	Tota	l Notes			-				timated from net fishery s			
se Period Cohort							Table 2. Su	mmary of finger	ing age compo	sition of Nool	isacersamish f	all chinook es	timated from net fishery s	cale data.		
	716,600	409,455	190,277	11,141	1,327,473	after calib.										
e Model Terminal Run (Run Reconstruction)	1,174	16,953	64,525	5,807	88,459		Year		2	3	4	5				
se Model Terminal Run (CVT)	1,062	15,545	63,533	5,732	85,872		1979		3.17%		56.68%		Average age composition			
se Catch in Nk-Sam Net (39 & 40) - Time 3 onl					64,127		1980		0.26%	28.32%	70.29%		7B,C,D only sample: 2170			
se Catch in Nk-Sam Net (local only)		95 95%		95.95%	61,530 95,95%		1981		1.24%	30.16%	65.01%		7B,C,D only sample: 2302			
minal Run Adjustment	95.95%		95.95%			=F9/F8	1982		3.17%	35.48%	56.68%		Average age composition			
e Terminal Run Age Composition	1.33%	19.16%	72.94%		100.00>	-	1983		8.93%	19.13%	65.33%		7B,C,D only sample: 2115			
imum Recoveries	50	50	50	50			1984		0.89%	77.93%	19.45%		7B,C,D only sample: 7309			
							1985		0.16%	29.21%	69.86%		7B,C,D only sample: 5059			
						-	1986		0.66%	15.32%	79.91%		7B,C,D only sample: 4234			
						-	1987		0.24%	26.83%	65.16%		7B,C,D only sample: 2878			
						-	1988		8.81%		69.83%	7.33%	7B,C,D only sample: 3511			
						-					19.51%		7B,C,D only sample: 3839			
ar: 1979						-	1990		1.19%	5.28% 34.30%	92.49% 40.94%		7B,C,D only sample: 4252 7B,C,D only sample: 2551			
ar: 1979							1991		4.07%		40.94%				+-	
	Age 2	Age 3	Age 4	Age 5	Tota	l Notes	1992		4.07%	28.24%	37.39%		7B,C,D only sample: 2028 7B,C,D only sample: 1881		+	
T Cohort Size			Age 4 1,897	Age 5 667	rota	NOTES	1993		16.1%	26.6%	56.0%					
T Cohort Size T Terminal Bun	(1)	(1)	1,897	368		-	1994		16.1%	26.6%	56.0%		7B,C,D only sample: 58		+	
ansion Factor	(1)	(1)	706	368			1995		3.17%	35.48%	35.3%		Average age composition 7B,C,D only sample: 996			
ansion Factor ir Terminal Bun	(1) 2,106	(1) 26.648	42568		74.820	local only	1996		3.1%		35.3% 56.68%		Average age composition		+	
r Terminal Hun se Model Terminal Run (CWT)	2,106	26,648	42568 63,533	3,498	74,820 85,872	iocai oniy	1997	U	3.17%	30.48%	56.68%	4.66%	Average age composition		+	
se Period Cohort	716,600	409,455	190,277	11,141	1,327,473	1									+	
r Cohort	1,421,014	409,455	114,372	6,337	2,243,638											
r Cohort r Cohort Scale Factor	1,421,014	1.71	0.60	0.57	2,240,600										+	
			0.00	0.01		-	1									
es: Cell formulas for 1979 age 3,5:	CVT cohot:	"(1)" if lowt rifa		from CWT												
	CVT Ter. run:	(1) (1)		from CVT												
	Exp. Factor:	i i i i i i i i i i i i i i i i i i i		=E22/E23			Fingerling	Age Compositi	on							
	Year Ter.run	=C11*F25		=E11*F25				sstabulation of so-		Gutmann, 1/5/S	96.					
	Base TR (CVT)	=base		=base												
	Base Cohort	=base		=base					2	3	4	5	Total			
	Year Cohort:	=C25/C26*C27		=E24"E25			1979	7B								
	Year Scale Fotr	=C28/C27		=E28/E27				7C								
ar: 1980								Nooksack River								
	Age 2	Age 3	Age 4	Age 5	Tota	l Notes		Total	0	0	0	0	0			
T Cohort Size	(1)	(1)	(1)	86				Percent	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!			
T Terminal Bun	(1)		ີເບັ	42												
ansion Factor	(1)	(1)	(i)	2.04					2	3	4	5	Total			
r Terminal Run	234	29,458	73,102	1,175	103,969	local only	1980	7BCD	6	642	1,496	26	2,170			
se Model Terminal Run (CWT)	1,062	15,545	63,533	5,732	85,872			Nooksack River	0	10	122	0	132			
se Period Cohort	716,600	409,455	190,277	11,141	1,327,473											
r Cohort	158,115	775,917	218,936	2,283	1,155,251											
r Cohort Scale Factor	0.22	1.89	1.15	0.20				Total	6	652	1,618	26	2,302			
								Percent	0.26%	28.32%	70.29%	1.13%	100.00%			
es: Terminal run excludes freshwater sport.																
									2	3	4	5				
							1981		18	437	942	52	1,449			
								Nooksack River	0	0	0	0	0			
ar: 1981								Total	18	437	942	52	1,449			
								Percent	1.24%	30.16%	65.01%	3.59%	100.00%			
	Age 2		Age 4		Tota	l Notes										
T Cohort Size	39,875	(1)	(1)						2	3	4	5	Total			
T Terminal Bun	87	(1)	(1)	(1)			1982		0	0	0	0	0			
ansion Factor	458.33	(1)	(1)					Nooksack River	0	0	0	0	0			
r Terminal Run	1,283	24,225	52,220	2,883	80,611	local only										
se Model Terminal Run (CWT)	1,062	15,545	63,533	5,732	85,872											
se Period Cohort	716,600	409,455	190,277	11,141	1,327,473			Total	0	0	0	0	0			
r Cohort	588,119	638,091	156,395	5,603	1,388,208	<u> </u>		Percent	#DIV/0!	#DIV/0!	#DIA101	#DIV/0!	#DIV/0!			
► BaseCWTTRun_Prn Nook5a																

rosort E	xcel - PSBa	seStockexp02	4.xls								
e <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	Format <u>T</u> ools	<u>D</u> ata <u>W</u> indow <u>H</u>	<u>t</u> elp							
	ti 🚑 🖪	LinePrinte	r 🔹 1	0 🖌 🔏 🖾	b 🛍 🗓 🛱 🗄	B <i>I</i> <u>U</u> %	◆.0 .00 ¥	→ C≚ →		🄊 • 🚣 • 🆓 ReplaceΣ 🕫 ੈ‡↓	≩↓ 70% • 😰 •
125	•	=		_							
		C sack Fall Finger	ling	E	F G	н		J			н ъ
/T File: \$	Stk023.cwt		12/02/2004 13:48	3							
an 1 Co	moute weigth	ed base period a	escapement and fr	ochuster ca	tch						
Sources:	1) VDFV Run F	econstruction (7/27	795), Area 777A								
	ependents and N Gutmann progra	ooksack-Samish B. m Chin.BAS.	asin;								
Year	Percent	Escapement		Percent	FW Catch						
1980 1981	10% 40%	14,066 13,886		36% 14%	1,791 3.077						
1982 1983	10% 40%	20,921 27,926		36% 14%	3,955						
				14%	4,639						
ghted Ave	erage	20,224			3,143						
p 2. Co	mpute catch	of nonlocal stoc	ks in Time Step 3:								
	Escape	ment	Exp.	CWT Net	(7B-D net)		Exp. CWT Net				
tock -	Total	CVT	Factor	NonTreaty	Treaty	NonTreaty	Treaty	Total	Stock Label		
1	20,224	2,040	9.91			0.0	0.0	0.0	Nooksack/Samish Fall	Lł	
2 3	500 500	12,514 1,570	0.04		403.5 66.85	0.3 5.2	16.1 21.3	16.5 26.5	No. Nooksack Native So. Nooksack Native		
4	10,443	756	13.81	6.6	13.3	90.7	183.5	274.2	Skagit Summer Fall Fingerling		
5 6	2,105 1,391	2,187 1,182	0.96 1.18		33.5 7.8	15.9 5.8	32.2 9.1	48.1 15.0	Skagit Summer Fall Yearling Skagit Spring Yearling		
7	4,814	1,554	3.10	0.0	0.0	0.0	0.0	0.0	Snohomish Summer Fall Fingerling		
8 9	3,352 831	2,791 1,554	1.20 0.53		68.0 0.0	40.4 0.0	81.7 0.0	122.1 0.0	Snohomish Fall Yearling Stillaguamish Summer Fall Fingerling		
10 11	1 20.018	1,135 1,290	0.00 15.52	4.3 2.2	6.7 4.5	0.0 34.4	0.0 69.5	0.0 104.0	Tulalip Fall Fingerling Mid-Sound Fall Fingerling		
12	1,062	2,082	0.51	4.0	6.6	2.1	3.3	5.4	UW Accelerated		
13 14	10,230 330	225 112	45.45 2.95		0.0	0.0 0.0	0.0 0.0	0.0 0.0	South Sound Fall Fingerling South Sound Fall Yearling		
15	100	1,596	0.06	0.0	0.0	0.0	0.0	0.0	White (Minter) Spring Fingerling		
16 17	4,078 126	433 147	9.42 0.86	0.0	1.2 0.0	5.5 0.0	11.0 0.0	16.5 0.0	Hood Canal Fall Fingerling Hood Canal Fall Yearling		
18 19	2,365 42.000	384 494	6.15 84.97		0.0	0.0 0.0	0.0	0.0 0.0	JDF Tributaries Fall Oregon Hatcheru Tule		
20	33,400	428	78.00	0.0	0.0	0.0	0.0	0.0	Washington Hatchery Tule		
21 22	14,192 40,365	1,158 4,900	12.26 8.24	4.7	0.0 9.5	0.0 38.7	0.0 78.5	0.0 117.2	Lower River Wild Bonneville Pool Hatchery		
23 24	22,205 51,025	216 9,438	102.92 5.41		0.0 2.5	0.0 6.6	0.0 13.4	0.0 20.0	Upriver Summer Upriver Bright		
25	23,720	1,746	13.58	0.0	0.0	0.0	0.0	0.0	Cowlitz Spring		
26 27	37,928 1,000	9,475 2,114	4.00 0.47		0.0	0.0 0.0	0.0 0.0	0.0 0.0	Willamette Spring Snake River Fall		
28	41,074	2,825	14.54	0.0	0.0	0.0	0.0	0.0	Oregon Fall North Migrating		
29 30	123,406 120,000	14,238 1,471	8.67 81.57	5.9	5.9 9.3	25.5 484.6	51.6 757.8	77.1 1242.4	WCVI Total Fraser Late		
31 32	43,631 16,947	8,359 1,127	5.22 15.03	4.5 6.6	7.1 13.4	23.6 99.7	37.0 201.6	60.7 301.3	Fraser Early Lower Georgia Strait		
	10,011		13.03	0.0	0				Letter theory a construction		
otal						879.0	1567.8	2446.8			
	mouto tora-t	ostoblocosos -	ant ratio								
р J. СО		catch/escapemo									
			64,524	(Source: J. G	utmann program Chin.B	AS)					
	Marine Catch Freshwater Cato	h	3,143								

Bas	e period f	reshw	ater cate	ch and e	escane	nent a	liustm
	t Excel - PSBa				cacanel		mastin
	t View Insert			ndow <u>H</u> elp			
	1990.				X 🗈 🛍	8	<u>в / u</u>
H30		=					
A	B adsheet to cor	C Doute bas	D D	E Dhomish Ea	F Il Eingerlin	G	H
	inal net harves		e penod om	ononnonn c	an ingenin	9	
	le <mark>stI023, tul023</mark> SNFAdj.XLS		This pea	je must be o	dono menu	allyand	
	02-Dec-04			added into r			
	program doe:		this sheet				
Stilla	guamish Base						
_	_	Bi	– <u>– – – –</u> ase 8A – –		— Bas	se 8 —	
	Esc			FW	NT	т	Run
	2 126.7 3 366.1	3 1.3		23.6 22.5	0 60.28	0 147.59	207.0 616.1
	4 985.5			32.8	0	0	1018.3
	5 <mark>75.3</mark>	0.0	0.0	0.9	0	0	76.2
Tulal	ip Base	_					
	- <u> </u>						
Aqe			ase 8A —			— HR-	_
Age	e Esc _i	D N	т т	8D+FW	Run	NT	Т
	2 13.1	1.1	7 26.5	16.01	57.4	0.0295	0.4624
	3 <mark>477.7</mark>		4 177.9	124.8	791.7	0.0143	0.2247
	4 588.4 5 55.8			147.33	1501.7	0.0306	0.4795
	5 <mark>5.8</mark>	0.1	D 0.0	9.1	64.9	0.0000	0.0000
Snoh	omish Base						
	0000 84 /		not and EN	not from C*		-n) г	
Age	Base 8A (zero) e Esci				Run	on)	
	2 105.2 3 468.9				207.0		
	3 468.9 4 498.9				616.1 1018.3		
	5 76.2				76.2		
Tulal	ip CWT Run	2402	5				
	Reconstruction						
	nsion Factor	0.20145					
	sted CWT Esc Escapement		5				
Dase	Locapement	1.00720					
► ►K V	Skagit Fall Year	Adj. \ Sn o	oh Fing Sim A	dj / SnohYea	arling / Mid	PS Fall Fing	/ UW Acce

Puget Sound Run Reconstruction spreadsheet: PSRR.xls

	osoft Excel - p													-	- 8
		sert Format To													- 8
		🛕 💞 🛛 Courie	er New	▼ 8	- 🕺 🖻 🛍 🗒	🗊 B I U % t‰ ;∞ ∽ ~ ⊶ 🖛 🗐	≣ ≣ ₫	•	🔄 🕗 + 🗛 +	💏 R <u>e</u> place	$\Sigma f_{\infty} \stackrel{2}{} \stackrel{2}{} \stackrel{2}{}$	100%	- 🛛 -	-	
Y3	<u>т</u>	=	**	IJ	**	▼	-		15	1.0	15				
1	1	U	V	W	X	r Escapement	Z	AA	AB	AC	AD	ΑE		AF	
2						Calibration: STK024.0UT									/1
3						12/02/2004 13:57									
4															
5															
6 7				ll Stk ime 3	Local fing Time 3	Stock	2	3	4	5	Total				
8	4	Total		ıme s otal	Time 3 Total	Nooksack/Samish Fall	738	4,060	15,908	256	20,962				
9				Otar	IOCAI	Skagit Fall Fingerling	1.024	2,146	7,893	404	11.467				
.0	24	2116	2	5247	24148	Skagit Fall Yearling	394	249	1,446	411	2,500				
.1	23	3238	3	8886	37252	Snohomish Fall Fingerling	485	2,162	2,300	352	5,299				
.2	5	48		131	671	Snohomish Fall Yearling	1,428	111	2,383	858	4,780				
.3	1	45		660	41	Stillaguamish Fall Fingerling	74	213	574	44	905				
4	0	36		311		Tulalip Fall Fingerling	0	0	0	0	0				
5	0	635 0	1	5263		Mid Sound Fall Fingerling UW Accelerated	490 455	4,048 861	14,133 194	1,838	20,509 1,516				
7	1	22		80		South Sound Fall Fingerling	455	274	8,604	1,352	10,360				
.8	Ū Ū	229		654		South Sound Fall Fingering South Sound Fall Yearling	59	80	196	1,352	389				
.9	ő	175		714		Hood Canal Fall Fingerling	810	1,717	2,202	159	4,888				
0	ŏ	0	ō			Hood Canal Fall Yearling	38	11	98	17	164				
1	308	1021	5	391		JDF Fall Fingerling	0	29	1,533	804	2,366				
2	0	0	1												
3	0	54		00											
4	7	36	-	29		Calibration: STK024.0VT									
25	28	139		671											
6	0	0	0			Model Stock	2	3	4	5	Total				
7	0	520 0	4	064											
8 9	7	0 410		153		Nooksack/Samish Fall Fingerling					<i></i>				
0	, 0	9404		4206		Marine Net Catch, All Stocks, T3 Marine Net Catch, Local Stocks, T3	419	12,373	46,081	5,260	64,133 61,400				
1		2404		4200		Freshwater Catch, All Time	16	641	2,435	277	3,369				
2						Freshwater tatth, All lime Escapement	738	4,060	15,908	256	20,962				
3						RR Terminal Run	1, 173	17,074	64,424	5,793	88,464				
4						ACK ACCOMENTED ANOT	-,			0,000					
5						Skagit Fall	•								
6						Fingerling Freshwater Catch	0	569	3,958	1,357					
7						Fingerling Escapement	1,024	2,146	7,893	404					
8	4	Total				Fingerling Freshwater Run	1,024	2,715	11,851	1,761					
9															
0	24	2088		4148		Yearling Freshwater Catch	0	22	0	330					
1	23	3193		7252		Yearling Escapement	394	249	1,446	411					
2	0	0		95		Yearling Freshwater Run	394	271	1,446	741					
3	0	0		67											
4	0	2		8		Marine Catch, All Stocks, T2+3	30	599	2,046	82	2,757				
5	0	19		77		Marine Net Catch, Skagit Fing, T2+3					712				
6	0	0	0			Marine Catch, RR Fingerling	22	545	1,824	58	2,448				
7	0	0	0			Marine Catch, RR Yearling	8	54	222	24	309				
8	0	0		32 01											
9 10	U 0	0	1			RR Fingerling Terminal Run	1,046	3,260	13,675	1,819					
51	0	0	-	0		RR Yearling Terminal Run	402	325	1,668	765					
52	U 0	0	1			Snohomish/Stillaguamish Fall									
٩ Þ	▶ psrr EscP	RN / CatchPRN				SHOHOMISH/SCIIIaGuamish Fail	4	I							
ady								-							

4.8 Example of CHCAL Cohort Analysis Process (Section 3.4 Equations 1-26)

"Backward" Cohort Analysis (Cohort Reconstruction) Using Section 3.4 Equations 1-13

The next section is a numeric example of a simple cohort analysis using the above equations. Some simplifying assumptions are made.

1) The example is for one stock, and one brood.

2) The example consists of four fisheries, two ocean troll fisheries, one ocean sport fishery, and one freshwater net fishery.

3) Size limits differ between the fisheries. However, size at age (i.e. proportion vulnerable) is assumed, not computed.

4) There is a single, annual timestep.

5) The maximum age is five.

6) 'Dropoff' mortality is assumed to be zero.

7) No CNR fisheries or periods

The starting data set, in practice taken directly from the RMIS CWT database is:

	Expanded Recoveries of BY 1995 CWTs										
	Oc	ean (Immatu	Inside (Mature)								
	Fishery 1	Fishery 2	Fishery 3	Fishery 4	Escapement						
Age 5	0.00	4.84	10.00	25.00	8.00						
Age 4	8.00	16.50	30.00	25.00	75.00						
Age 3	10.00	9.60	40.00	75.00	106.67						
Age 2	0.00	10.00	0.00	0.00	10.00						

Assumed or input parameter values are:

	Annual	Р	roportion	Vulnerab	le	Incider	ntal
	Survival Rates	Fish 1 Fish 2 Fish 3 Fish 4			Mortality	Rates	
Age 5	0.9	99%	99%	99%	99%	Fishery 1	0.25
Age 4	0.8	85%	85%	90%	99%	Fishery 2	0.25
Age 3	0.7	70%	70%	80%	95%	Fishery 3	0.15
Age 2	0.6	40%	40%	70%	95%	Fishery 4	0.40

Encounter Rate Adjustme	nt Factors
Fishery 1	0.382
Fishery 2	0.382
Fishery 3	0.179
Fishery 4	0.035

Some of the simplifying assumptions require slightly different subscripting than is used in CHCAL, and some equations used in CHCAL are not needed. For that reason, new equations will be presented for this example. Notation is straightforward and will not be described. All new, simplified equations and numeric examples are enclosed in boxes.

Step 1) Sum up all age 5 mortalities and escapements, then divide by the age 5 survival rate to estimate an age 5 cohort after natural mortality. Corresponds roughly to equations 1, 2, and 4. (At this stage, Shaker mortalities are zero.)

$$Age5Cohort = \sum Age5OceanCatch + \sum Age5TermCatch + Age5Escapement$$
$$Age5Cohort = 14.84 + 25 + 8$$
$$Age5Cohort = 47.84$$

Step 2) The age 4 starting cohort, after natural mortality, consists of the age 4 fish caught in the ocean, the mature run, and those that remained in the ocean to become the age 5 cohort. Corresponds to equations 5 and 6. Age 3 and age 2 cohorts are computed the same way:

$$\begin{split} Age4Cohort &= \frac{Age5Cohort}{0.9} + \sum Age4OceanCatch + \sum Age4TermCatch + Age4Escapement \\ Age4Cohort &= \frac{47.84}{0.9} + 54.5 + 25 + 75 \\ Age4Cohort &= 207.66 \\ \end{split}$$

$$\begin{split} Age3Cohort &= \frac{Age4Cohort}{0.8} + \sum Age3OceanCatch + \sum Age3TermCatch + Age3Escapement \\ Age3Cohort &= \frac{207.66}{0.8} + 59.60 + 75 + 106.67 \\ Age3Cohort &= \frac{207.66}{0.8} + 59.60 + 75 + 106.67 \\ Age3Cohort &= 500.85 \\ \end{split}$$

$$\begin{split} Age2Cohort &= \frac{Age3Cohort}{0.7} + \sum Age2OceanCatch + \sum Age2OceanCatch + Age2Escapement \\ Age2Cohort &= 100.85 \\ Age2Cohort &= 715.5 + 10 + 10 \\ Age2Cohort &= 735.5 \\ \end{split}$$

Once an initial estimate of cohort sizes is available, an initial estimate of Shaker (bycatch) mortality can be made. Required information includes the number of sublegal encounters by fishery, the proportion of sublegals by age and fishery, and the incidental mortality rate.

Step 1) Compute sublegal encounters by fishery – recall that the Encounter Rate Adjustment Factor is the ratio of sublegal to legal encounters in a fishery (analogous to Equation 7).

Fishery1SLEncounters = Fishery1Catch * Fishery1EncAdjustFactor Fishery1SLEncounters = 18 * 0.382 Fishery1SLEncounters = 6.88 Fishery2SLEncounters = Fishery2Catch * Fishery2EncAdjustFactor Fishery2SLEncounters = 40.94 * 0.382 Fishery2SLEncounters = 15.64 Similarly, Fishery3SLEncounters = 14.32 Fishery4SLEncounters = 4.38

Step 2) Within each fishery, compute the sublegal cohorts by age (analogous to Equations 11 and 12):

Fishery1Age2SubLegPOP = Age2Cohort * (1 - Fishery1Age2PropVulnerable) Fishery1Age2SubLegPOP = 735.5 * (1 - 0.40) Fishery1Age2SubLegPOP = 441.3*
*
*
Fishery3Age5SubLegPOP = 0.48
For Fishery4, the Cohort size equals the Terminal Run :
Fishery4Age2SubLegPOP = (\sum Fishery4Age2Catch + Age2Escape) * (1 - Fishery4Age2PropVulnerable)
Fishery4Age2SubLegPOP = 10 * 0.05
Fishery4Age2SubLegPOP = 0.5
*
*
Fishery4Age5SubLegPOP = 0.3

This generates a set of sublegal p	pulation sizes by fish	ery and age as show	below. Bold numbers
correspond to the calculations show	above.		

	Sub Legal Populations								
	Fishery 1	Fishery 1 Fishery 2 Fishery 3							
Age 5	0.5	0.5	0.48	0.3					
Age 4	31.1	31.1	20.80	1.0					
Age 3	150.3	150.3	100.20	9.1					
Age 2	441.3	441.3	220.60	0.5					
Total	623.2	623.2	342.10	10.9					

Now the Sublegal proportion by age within a fishery can be easily computed:

		Sub Legal Proportions							
	Fishery 1	Fishery 2	Fishery 3	Fishery 4					
Age 5	0.1%	0.1%	0.1%	3.0%					
Age 4	5.0%	5.0%	6.1%	9.2%					
Age 3	24.1%	24.1%	29.3%	83.2%					
Age 2	70.8%	70.8%	64.5%	4.6%					
Total	100.0%	100.0%	100.0%	100.0%					

Now Shaker mortalities can be computed by fishery and age (Equation 13):

Fishery1Age2Shakers = Fishery1SLEncounters * Fishery1Age2SubLegProportion * Fishery1IMRate Fishery1Age2Shakers = 6.88 * 0.708 * 0.25 Fishery1Age2Shakers = Fishery1SLEncounters * Fishery1Age3SubLegProportion * Fishery1IMRate Fishery1Age3Shakers = 6.88 * 0.241 * 0.25 Fishery1Age3Shakers = 0.41 * * Fishery4Age5Shakers = Fishery4SLEncounters * Fishery4Age5SubLegProportion * Fishery4IMRate Fishery4Age5Shakers = 4.38 * 0.03 * 0.40 Fishery4Age5Shakers = 0.05

This generates a first estimate of shaker mortalities by fishery and age as shown below. Bold numbers correspond to the example.

Shaker Mortalities							
	Fishery 1 Fishery 2 Fishery 3						
Age 5	0.00	0.00	0.00	0.05			
Age 4	0.09	0.20	0.13	0.16			
Age 3	0.41	0.94	0.63	1.45			
Age 2	1.22	0.25	1.38	0.08			

Finally, the estimated shaker mortalities are added back into the starting data set of observed recoveries, to generate a new recovery data set that includes shaker mortalities. The new recovery data set is:

	Expanded Recoveries of BY 1995 CWTs +Shakers							
	Oc	ean (Immatu	Inside	(Mature)				
	Fishery 1	Fishery 1 Fishery 2 Fishery 3 Fishery 4		Fishery 4	Escapement			
Age 5	0.00	4.84	10.00	25.05	8.00			
Age 4	8.09	16.70	30.13	25.16	75.00			
Age 3	10.41	10.54	40.63	76.45	106.67			
Age 2	1.22	10.25	1.38	0.08	10.00			

Now a backward cohort analysis and shaker mortality estimation is done again with the new recovery data set. This process is repeated until the age 2 cohort size stabilizes (usually three or four iterations). For this example, the cohort sizes stabilized after 4 iterations. The cohort sizes (after natural mortality) at each iteration were:

	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5
Age 5	47.8	47.9	47.9	47.9	47.9
Age 4	207.7	208.3	208.6	208.3	208.3
Age 3	500.8	505.1	505.4	505.3	505.3
Age 2	735.5	747.0	746.7	747.7	747.7

The complete cohort reconstruction looks like this:

		Fishe	ry 1	Fishe	ry 2	Fishe	ery 3	Term	Fishe	ry 4	
	Cohort	Catch	IM	Catch	IM	Catch	IM	Run	Catch	IM	Escape
Age 5	47.9	0.0	0.0	4.8	0.0	10.0	0.0	33.1	25.0	0.1	8.0
Age 4	208.3	8.0	0.1	16.5	0.2	30.0	0.1	100.2	25.0	0.2	75.0
Age 3	505.3	10.0	0.5	9.6	1.0	40.0	0.6	183.1	75.0	1.5	106.7
Age 2	747.7	0.0	1.3	10.0	3.1	0.0	1.4	10.1	0.0	0.1	10.0

Example of "Forward" Cohort Analysis (Forward Reconstruction) for OOB Return to Base Simulation Using Section 3.4 Equations 14-26.

The objective of a return to base, or OOB analysis, is to estimate the CWTs that would have been recovered from a 'current year' brood had that brood been fished on under base period conditions. Statistics required for an OOB analysis and forward cohort analysis are

1) the maturation rate at age,

2) the exploitation rate by fishery and age on the vulnerable cohort of the 'current year' brood,

3) the proportion vulnerable, by age and fishery, during the base period. This may differ from the 'current year' due to size limit changes, and

4) the ratio of the exploitation rate by each fishery in the current year to the exploitation rate of the same fishery during the base period. This scalar is derived independently of the calibration process. Ideally, it would be estimated for each fishery using a number of CWT stocks, similar to the stock in question, which were tagged both in the 'current year' and during the base period. Ideally, the scalar should be estimated using vulnerable cohorts, not total cohorts.

Starting data sets:

Maturation rates are easily computed from the data in the final backwards cohort analysis (analogous to equations 15 and 17:

Age2MatRate =	Age2TerminalRun
Age2MaiKale –	Age2Cohort - \sum Age2OceanMortalities
Age2MatRate =	$\frac{10.1}{747.7 - 15.8}$
Age2MatRate =	
Similarly,	
Age3MatRate = 0	0.413
Age4MatRate =	0.653
Age5MatRate = 1	1.000

The exploitation rates on the 'current year' vulnerable cohort are simply (analogous to Equation 18):

$$Fishery1Age2ER = \frac{Fishery1Age2Recoveries}{Age2Cohort * (Fishery1Age2PropVulnerable)}$$

$$Fishery1Age2ER = \frac{0}{747.7 * 0.4}$$

$$Fishery1Age2ER = 0.00$$

$$Fishery1Age3ER = \frac{Fishery1Age3Re cov eries}{Age3Cohort * (Fishery1Age3Pr opVu ln erable)}$$

$$Fishery1Age3ER = \frac{10.0}{505.3 * 0.7}$$

$$Fishery1Age3ER = 0.0283$$

$$*$$

$$*$$

$$Fishery4Age5ER = \frac{Fishery4Age5Recoveries}{Age5TerminalRun * (Fishery4Age5PropVulnerable)}$$

$$Fishery4Age5ER = \frac{25}{33.1 * 0.99}$$

$$Fishery4Age5ER = 0.763$$

Computing the vulnerable cohort exploitation rate for all fisheries and ages yields (values computed in the example are bolded):

	Fishery 1	Fishery 2	Fishery 3	Fishery 4
Age 5	0.0000	0.1020	0.2109	0.7640
Age 4	0.0452	0.0932	0.1600	0.2521
Age 3	0.0283	0.0271	0.0990	0.4311
Age 2	0.0000	0.0334	0.0000	0.0000

In this example, the size limit in fishery 3 was less during the base that in the current year, and the size limits in fishery 2 and fishery 3 were the same:

	Base Proportion Vulnerable						
	Fishery 1	Fishery 2	Fishery 2 Fishery 3				
Age 5	99%	99%	99%	99%			
Age 4	85%	99%	99%	99%			
Age 3	70%	90%	90%	95%			
Age 2	40%	85%	85%	95%			

In this example, the two troll fisheries are a little smaller than they were during the base period, the ocean sport fishery is much bigger, and the freshwater net fishery has not changed. The exploitation rate scalars are:

	ER Scalar
Fishery 1	0.80
Fishery 2	0.85
Fishery 3	4.00
Fishery 4	1.00

A forward cohort analysis simply starts with the age 2 cohort, and moves it forward through time, with natural mortality and fishing processes occurring instantaneously. Again, the objective is to estimate recoveries by age and fishery during the base period. Starting with the age2 cohort from the current year (analogous to equations 19-26):

Fish1Age2BP Re $c = 747.7 * 0.99 * \frac{0}{0.4}$ $Fish1Age2BP \operatorname{Re} c = 0$ $Fish2Age2BP \operatorname{Re} c = Age2Cohort * Fish2Age2 \operatorname{Pr} opVu \ln * \frac{Fish2Age2ExpRate}{Fish2ERScalar}$ $Fish2Age2BP \operatorname{Re} c = 747.7 * 0.85 * \frac{0.0334}{0.85}$ $Fish2Age2BP \operatorname{Re} c = 25.0$ $Fish3Age2BP \operatorname{Re} c = Age2Cohort * Fish3Age2 \operatorname{Pr} opVu \ln * \frac{Fish3Age2ExpRate}{Fish3ERScalar}$ Fish3Age2BP Re $c = 747.7 * 0.85 * \frac{0}{4.0}$ $Fish3Age2BP \operatorname{Re} c = 0$ $Age2TerminalRun = (Age2Cohort - \sum OceanFisheryAge2Catches) * Age2MatRate$ Age2TerminalRun = (747.7 - (0 + 25 + 0)) * 0.014Age2TerminalRun = 10.0 $Fish4Age2BP \operatorname{Re} c = Age2Ter \min alRun * Fish4Age2 \operatorname{Pr} opVu \ln^{*} \frac{Fish4Age2ExpRate}{Fish4ERScalar}$ Fish4Age2BP Re $c = 10.0 * 0.95 * \frac{0}{1.0}$ $Fish4Age2BP \operatorname{Re} c = 0$ *Age3Cohort* = Remaining*Age2Cohort* * *Age3NatMortality* $Age3Cohort = (Age2Cohort - \sum OceanFisheryAge2Catches - Age2TerminalRun) * Age3NatMortality$ Age3Cohort = (747.7 - 25.0 - 10.0) * 0.7Age3Cohort = 498.9 $Fish1Age3BP \operatorname{Re} c = Age3Cohort * Fish1Age3 \operatorname{Pr} opVu \ln * \frac{Fish1Age3ExpRate}{Fish1ERScalar}$ Fish1Age3BP Re $c = 498.9 * 0.7 * \frac{0.0283}{0.8}$ $Fish1Age3BP \operatorname{Re} c = 12.35$ *

After the above calculations are complete, the result is a reconstructed cohort using a forward analysis as shown below. Derivation of the bold numbers is shown above. Some slight rounding may be present as the table below was computed directly in a spreadsheet.

	Cohort after				Cohort After	Terminal			Remaining Ocean
	NM	Fish1	Fish 2	Fish 3	Fishing	Run	Fish 4	Escape	Cohort
Age 2	747.7	0.0	25.0	0.0	722.7	10.0	0.0	10.0	712.8
Age 3	499.0	12.34	14.3	11.1	461.2	190.4	78.0	112.4	270.8
Age 4	216.6	10.4	23.5	8.6	174.1	113.7	28.4	85.3	85.3
Age 5	76.8	0.0	9.1	4.0	63.7	63.7	48.1	15.5	

The data derived from the examples show above, and written to the SIM file are shown in the table below, and are taken directly from data in the forward cohort analysis table in the previous section. Note that this data is directly comparable, and in exactly the same form, as the data set of expanded CWT recoveries used to begin the backward cohort analysis.

	Recoveries of Base Period CWTs from OOB analysis						
	Ocean (Immature)			Inside (Mature)			
	Fishery 1	Fishery 2	Fishery 3	Fishery 4	Escapement		
Age 5	0.00	9.1	4.0	48.10	15.5		
Age 4	10.4	23.5	8.6	28.40	85.3		
Age 3	12.34	14.3	11.1	78.00	112.4		
Age 2	0.00	25.0	0.00	0.00	10.00		

4.9 Calibration Program "pseudo" code

Chinook FRAM Calibration Programs

ChDat.Bas

This program checks data from the stock spreadsheets and merges it with CWT data from the tag code summary program to create input files for the calibration program.

Input Files are:

File from stock spreadsheet (for each stock) with stock-specific parameters and target encounter rate (for each fishery). [Stk???.chk] File with summarized CWT recoveries (by stock, age, fishery, time step)

[Stk???.Cwt]

File with FRAM fishery effort scalars (by fishery, time step) [Brood??.Scl]

Output Files are:

Merged Calibration [Stk???.Cal] Error Checking [Stk???.Err]

Program Flow ReadControl – Reads Chk-File Variables

- File names, array sizes, and convergence tolerance
- Init Initialize Arrays
- ReadParam Reads remainder of Chk-File
 - Growth (L, T0, K, CV), Terminal Flags (TermFlag), Minimum Legal Size (MinSize), Natural Mortality (NatMort), Release Mortality Rate (MortRate), Dropoff Rate (DropOff), Encounter Rate Adjustment Factor (EncRateAdj), Non-Retention (CNR), Total Landed Catch (TrueCatch), Fishery Catch Impute Flags (ImputeFlag)

ReadRecov – Read CWT-File Variables

- Base Period Escapement (ObsEscpmnt)
- Expanded CWT Recovery (Catch) and Modified Escapement (Escape) Impute – Copy CWT Recoveries from selected fishery to new fishery

CheckLegal – Check if Legal Sized Population exists for each CWT Recovery

- CompLegProp Compute Legal Sized Proportion (LegalProp)
 - Mean = L * (1-10**(-K * (T-T0)))
 - \circ SD = CV * Mean
 - LegalProp = 1 NormalDistr(MinSize, Mean, SD)

CheckCNR – Check if Fishery has Landed Catch for CNR Estimation

- ShakDistr Compute Stock Concentration and set Shaker Inclusion Flag
 - Sum CWT Recoveries by Stock, Fishery (StkFishCatch)
 - Compute Concentration (Conc = StkFishCatch / TrueCatch)
 - Set Inclusion Flags (StkCheck) for Upper 70% of "Conc" Fisheries

ChCal.Bas

This program estimates the base period CWT recoveries for each out-of-base (OOB) stock by brood year.

Input Files are:

Calibration Data from ChkDat.Bas program (Stk???.Cal) Edited CWT Recovery File (Stk???.Edt) Brood Year FRAM Fishery Scalars (Brood??.Scl)

Output File is:

Simulation with OOB Stocks included (Stk???.Sim)

Program Flow

ReadControl – Reads Cal-File Variables

- File names, array sizes, and convergence tolerance

Init – Initialize Arrays

ReadParam – Reads remainder of Cal-File

 Growth (L, T0, K, CV), Terminal Flags (TermFlag), Minimum Legal Size (MinSize), Natural Mortality (NatMort), Release Mortality Rate (ShakMortRate), Drop-off Rate (OtherMort), Encounter Rate Adjustment Factor (EncRateAdj), Non-Retention (CNRInput), Total Landed Catch (TrueCatch), Stock Shaker Inclusion Flags (StkCheck)

ReadCatch - Reads Escapement and Edited, Expanded CWT Recoveries

- Base Period Escapement (ObsEscpmnt)
- CWT Recoveries (Escape and StkMortRec.Catch)

CompExpFact - Computes the expansion factor for CWT recoveries by dividing the total (tagged + untagged) observed escapement by the

CWT escapement and the total expanded catch in each fishery.

- CWTEscpmnt = Sum of "Escape" by Stock
- ExpFact =ObsEscpmnt / CWTEscpmnt
- AddCatch Add Expanded Catch in all Fisheries and compute the proportion of the catch comprised of each stock.
 - Total Catch = ExpFact * Catch (by Stock)
 - StockCatchProp = Annual Stock Catch / Total Catch
- AdjCatch Adjust CWT Recoveries for each flagged Fishery to equal Observed
 - Catch (flags are user defined)

- Recovery Adjustment Factor = TrueCatch / AnnualCatch

AddCatch – Recalculate Expanded Catch and Stock Proportions

CompCohort - Reconstruct cohort from CWT recoveries and estimated shaker and CNR mortality. Cohort reconstruction proceeds backwards in time beginning with the oldest age class and last time step.

- Total Escapement = Escapement * ExpFact
- Total Mortality = (Catch + CNR + Shaker) * ExpFact
- Cohort = Total Escapement + Total Mortality
- Cohort in Time Step -1 =Cohort / (1 -NatMort)

Loop Until Age 2 Cohort for all Stocks Stabilizes (<1% change/loop)

CompIncMort – Compute Incidental Mortality with new Cohort Sizes
CompShakers – Compute Shaker Mortalities in each fishery based upon the
ratio of the sublegal population to the legal population. A stock is
included within the population for the fishery if its catch comprises
more than the value of the parameter StkInclCrit. Encounter rates are
adjusted to match those specified in the .Cal file by means of the
EncRateAdj array.
Total Encounters (Total Time Step Catch * Target Encounter Rate) Loop for each Stock
Loop for each Age
Compute Sub-Legal Proportion (SubLegalProp, LegalProp) Compute Sub-Legal Population (Cohort * SubLegalProp)
Compute Sub-Legal Proportions by Age
Loop for each Age Shakers = TotalEnc * PropSubPop * ShakMortRate * StockCatch Prop
CompCNR – Compute Non-Retention Mortality using one of two methods
Method 1- Ratio of CNR Days to normal regulation days to get
total
Uses normal Fishery stock composition for Non-
Retention
Method 2 – External estimates of legal and sub-legal encounters Loop for each Stock
Loop for each Age
LegProp = ExpFact * StkMortRec.Catch /
TotalCatch
Legal-CNR = LegProp * LegalEnc * ShakMortRate
SubLegal-CNR = SubLegProp * SubEnc *
ShakMortRate
CohortCheck – Check Age-2 Cohort Size change with Convergence Tolerance
Forward - Adjust recoveries to a different base period using OOB calibration year
fishery effort scalars to adjust the base period exploitation rates.
 Compute Exploitation Rates in Recovery Years Loop for each Time Step
Loop for each Stock
Loop for each Fishery
Loop for each Age
Compute Legal Sized Proportion (LegalProp)
ExRate = ExpFact * Catch / (Cohort * LegalProp)
- Compute Maturation Rates in Recovery Years
Loop for each Time Step
Loop for each Stock
Loop for each Fishery
Loop for each Age
MatRate = TermCohort / [(TermCohort + Cohort) / (1 – NatMort)]

Read Fishery Effort Scalars from Brood??.Scl File -Initial Cohort = Time 1, Age 2 Cohort / (1 – NatMort) Loop for each Stock Check ExRate < 1 else set to .9 Check if new Fisheries have Base Period CWT Recoveries Loop for each Age Loop for each Time Step Loop for each Preterminal Fishery Compute Legal Sized Proportion (LegalProp) CompCatch = ExplAdjFact * (ExRate / ExplScale) * Cohort * LegalProp MixedCatch = Sum of CompCatch Cohort = Cohort – MixedCatch MatCohort = Cohort * MatRate Loop for each Terminal Fishery Compute Legal Sized Proportion (LegalProp) CompCatch = ExplAdjFact * (ExRate / ExplScale) * Cohort * LegalProp MatCatch = Sum of CompCatch CompEscape = MatCohort – MatCatch Cohort = Cohort * (1 - MatRate)Print Output to Stk???.Sim File - CompEscape (by Stock, Age, Time Step) CompCatch (by Stock, Age, Time Step) SaveDat – Creates FRAM .Out File for validation **ReCalculate Maturation Rates with new Cohort Sizes** Calculate Adult Equivalent (AEQ) Rates with new Maturation Rates Loop for each Stock Loop for each Age descending order Loop for each Time Step descending order MaxAge AEQ = 1 $AEQ = \{MatRate + [(1 - MatRate) * (1 - NatMort)]\} * (AEQ+1 Time Step)$ Print AEQ, Growth, Shaker Inclusion Flags, Initial Cohort Sizes, Model Stock Proportions, Dropoff Rates, Natural Mortality Rates, Shaker Mortality Rates, Encounter Rate Adjustment Factors, Terminal Fishery Flags, Maturation Rates, Exploitation Rates, Shaker Encounter Rates

Merge.Bas

This program merges several non-base period datasets and re-splits the Treaty/Non-Treaty fisheries using preset proportions.

Input File are:

File containing names of ???.sim files to use in merge calculations. [????.cmd] Simulation files listed in command file above.

Output file is:

Merged simulation file [????.Sim]

Program Flow

Read Command File to get Simulation File names. Read CWT Recovery Simulation Files

- Species, Stock, Age, Fishery, Time Step, Catch
- Sum Catch for each year

Calculate weighting factors (proportion by year or external if flagged) Sum weighted catches across years

Split Treaty/Non-Treaty fisheries using PropTreaty array

Treaty Catch Proportion Array

Fishery	Oct-Apr	May-Jun	Jul-Sep
Area 3/4 Troll	1	0.19	0.22
Area 2 Troll	0	0.01	0.02
GH Net	0	0	0.06
SJ Net	0.17	1	0.27
NKSM Net	0.38	1	0.61
JDF Net	0.96	1	0.71
Area 8 Net	0.06	1	0.71
Area 8A Net	0.81	1	0.94
Area 8D Net	1	1	0.99
6B/9 Net	0.17	1	0.54
10-11 Net	0.27	1	0.60
10A Net	1	1	1
10E Net	1	1	1
HC Net	0.53	1	0.98
13B Net	1	1	1
13A Net	1	1	1

MrtRatio.Bas

This program calculates the ratio of total mortality to landed catch from the Chinook FRAM base period file.

Input Files are:

Chinook FRAM base period command file [????.CMD] Chinook FRAM base period calibration file [????.OUT] Binary save file of Mortality [????MRT] Binary save file of Cohort Sizes [????COH]

Output File is:

File containing ratios [MrtRatio.Prn]

Program Flow

Read Stock and Fishery names from command file Read Terminal Fishery Flags from calibration file Read Landed Catch and Total Mortality from 'MRT' file Calculate Ratio (Total Mortality / Landed Catch) If Landed Catch = 0 but Total Mortality <> 0 - Get Cohort Size from 'COH' file

- Ratio = Total Mortality / Cohort Size

Recon.Bas

ReadStk - Read Data from stock text files created by UpDtTxt.Bas

- Base Period Terminal Run (BaseTermRun by age)
- Terminal Run Scalars for OOB years (Scale)
- TermRun = BaseTermRun * Scale (for each year by age)
- Base Period Variables [Cohort Size (Cohort), Maturation Rate (MatRate), Growth (L, T0, K, CV), Terminal Flags (TermFlag), Exploitation Rates (BaseU)]
- Average Ratio of Total Mortality to Landed Catch (MrtRatio)

Loop for each OOB Year

ReadInp - Read Data from stock/year specific SCL file

- Natural Morality Rate (NatMort)
- Minimum Legal Size (MinSize)
- Fishery Scale Factors (UScale)

Loop for each Age

Compute Mature Run (CompMatRun)

- Compute Legal Sized Proportion (CompLegProp=LegalProp)
- Compute Terminal Exploitation Rate
 - U = BaseU * LegalProp
 - TermU = U * UScale * MrtRatio
- MatRun = TermRun / (1 TermU)

Loop for each Time Step

Compute Preterminal Mortality

- Cohort = Cohort from Time Step +1
- Cohort = MatRun / MatRate (Terminal Time Step)

Loop for each Preterminal Fishery

- Compute Legal Sized Proportion (LegalProp)
- U = BaseU * LegalProp
- PretermU = U * UScale * MrtRatio
- Cohort = Cohort / (1 PretermU)

Save Results (SaveRes)

- o Print Terminal Run, Cohort Size, Expansion Factor, Recruit Scaler
- Expansion Factor = Initial Cohort / TermRun
- Recruit Scaler = Initial Cohort / ModelCohort
- [Simulation for Predicted Catch]
- Loop for each Age
 - Loop for each Time Step
 - \circ Cohort = Cohort * (1 NatMort)

Loop for each Preterminal Fishery

- Compute Legal Sized Proportion (LegalProp)
- Catch = UScale * BaseU * LegalProp * Cohort
- Total = Catch * MrtRatio
- Cohort = Cohort TotalMort

Loop for each Terminal Fishery

- MatRun = Cohort * MatRate
- Compute Legal Sized Proportion (LegalProp)
- Catch = UScale * BaseU * LegalProp * Cohort
- Total = Catch * MrtRatio

End

SfmFram.C

This program splits the stocks into marked and unmarked components for use with mark selective fishery calculations. This process involves splitting the original cohort size for each stock into two equal components and duplicating the variables used for maturation, growth, exploitation, and shakers. Unmarked stock components are always odd numbered and marked components even numbered in the base period and command files.

Input File are:

Base Period File from Calibration Process. [????.out]

Output file is:

New Base Period File with Marked and UnMarked components for each original stock [????.out]

Program Flow

Read Calibration Base Period File. For Each Line Determine if Marked/UnMarked Split is needed. If Yes, Write the required two sections for each component.